Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:09:37

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 92.12m²Site Reference:Bell Road, BottishamPlot Reference:Plot 19

Address: Plot 19

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 17.02 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

8.98 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 49.1 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 43.9 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.37 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 018403):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular)

Efficiency 89.8 % SEDBUK2009

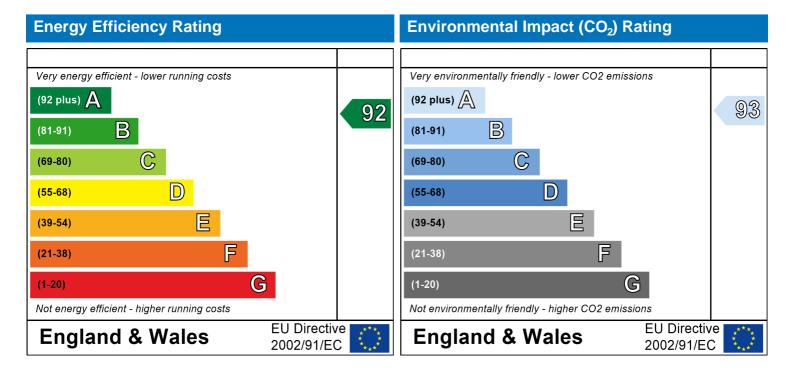
Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.	•	
	Permitted by DBSCG: 2.30	0 kWh/day	OK
Primary pipework insulated:	Yes		OK
6 Controls			
Space heating controls	TTZC by plumbing and ele	ectrical services	oĸ
Hot water controls:	Cylinderstat		OK
	Independent timer for DHV	N	OK
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with I	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (East Anglia):		Slight	ОК
Based on:			
Overshading:		Average or unknown	
Windows facing: East		1.3m²	
Windows facing: East		0.87m²	
Windows facing: West		1.5m²	
Windows facing: North		0.53m²	
Windows facing: North		0.53m²	
Windows facing: West		3.18m²	
Windows facing: West		1.46m²	
Windows facing: East		1.46m²	
Windows facing: West		0.99m²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key features			
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

Predicted Energy Assessment



Plot 19

Dwelling type: Date of assessment: Produced by: Total floor area: Semi-detached House 03 November 2022 Liam Mason 92.12 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Address: Plot 19 Located in: **England** Region: East Anglia

UPRN:

03 November 2022 Date of assessment: 29 November 2022 Date of certificate: New dwelling design stage Assessment type:

New dwelling Transaction type: Tenure type: Unknown Related party disclosure: No related party Thermal Mass Parameter: Indicative Value Low

True Water use <= 125 litres/person/day:

508 PCDF Version:

Dwelling type: House

Semi-detached Detachment:

2022 Year Completed:

Floor Location: Floor area:

45.56 m² 2.4 m Floor 0 Floor 1 46.56 m² 2.4 m

15.38 m² (fraction 0.167) Living area:

Front of dwelling faces: East

pen	mig	type	

Opening type:	S:				
Name:	Source:	Type:	Glazing:	Argon:	Frame:
D_13	Manufacturer	Solid			
W_106	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_107	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_108	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_109	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_110	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_111	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_112	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_113	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
W_114	Manufacturer	Windows	low-E, $En = 0.05$, soft coa	t Yes	
Name:	Gap:	Frame Fa	ctor: g-value: U-value	: Area:	No. of Openings
D_13	mm	0	0 1.2	2.01	1
W 106	16mm or more	0.7	0.63 1.4	1.3	1

Storey height:

Name:	Gap:	Frame F	actor: g-value:	U-value:	Area:	NO. C
D_13	mm	0	0	1.2	2.01	1
W_106	16mm or more	0.7	0.63	1.4	1.3	1
W_107	16mm or more	0.7	0.63	1.4	0.87	1
W_108	16mm or more	0.7	0.63	1.4	1.5	1
W_109	16mm or more	0.7	0.63	1.4	0.53	1
W_110	16mm or more	0.7	0.63	1.4	0.53	1
W_111	16mm or more	0.7	0.63	1.4	3.18	1
W_112	16mm or more	0.7	0.63	1.4	1.46	1
W_113	16mm or more	0.7	0.63	1.4	1.46	1
W_114	16mm or more	0.7	0.63	1.4	0.99	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
D_13	Doors	Wall 1	East	2.01	1
W_106	Windows	Wall 1	East	1.3	1
W_107	Windows	Wall 1	East	0.87	1
W_108	Windows	Wall 1	West	1.5	1
W 109	Windows	Wall 1	North	0.53	1

SAP Input

W_110	Windows	Wall 1	North	0.53	1
W_111	Windows	Wall 1	West	3.18	1
W_112	Windows	Wall 1	West	1.46	1
W_113	Windows	Wall 1	East	1.46	1
W_114	Windows	Wall 1	West	0.99	1

Overshading: Average or unknown

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elemer	<u>its</u>						
Wall 1	99.6	13.83	85.77	0.19	0	False	N/A
Roof	46.56	0	46.56	0.11	0		N/A
Floor 1	46.56			0.11			N/A
Internal Elemen	<u>its</u>						
Party Elements							
Party Wall	42.18						N/A

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0788

Length	Psi-value		
10.52	0.3	E2	Other lintels (including other steel lintels)
7.99	0.04	E3	Sill
25.26	0.05	E4	Jamb
19.53	0.16	E5	Ground floor (normal)
19.53	0.07	E6	Intermediate floor within a dwelling
11.26	0.06	E10	Eaves (insulation at ceiling level)
8.27	0.24	E12	Gable (insulation at ceiling level)
10.2	0.09	E16	Corner (normal)
10.2	0.06	E18	Party wall between dwellings
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.27	0.16	P1	Ground floor
8.27	0	P2	Intermediate floor within a dwelling
0	0.16	P1	
0	0	P2	
5.63	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

SAP Input

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8

Brand name: Vaillant
Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular boiler) Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder

Cylinder volume: 210 litres

Cylinder insulation: Measured loss, 1.32kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: East

Assess Zero Carbon Home: No

		User Details:				
Assessor Name:	Liam Mason	Stroma Nu	mber:	STRO	033679	
Software Name:	Stroma FSAP 2012	Software V	ersion:	Versio	n: 1.0.5.58	
		Property Address: Plot	19			
Address :	Plot 19					
Overall dwelling dime	insions:	Area(m²)	Av. Height(r	m)	Volume(m³)	
Ground floor		45.56 (1a) >		(2a) =	109.34	(3a)
First floor		46.56 (1b) >		(2b) =	111.74	」 (3b)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1	n) 92.12 (4)				
Dwelling volume		,	(3b)+(3c)+(3d)+(3e)	+(3n) =	221.09	(5)
2. Ventilation rate:				L	221.00	
2. Ventuation rate.	main seconda heating heating	ry other	total		m³ per hou	r
Number of chimneys		+ 0 =	0	x 40 =	0	(6a)
Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)
Number of intermittent fa	ns		3	x 10 =	30	(7a)
Number of passive vents			0	x 10 =	0	(7b)
Number of flueless gas fi	res		0	x 40 =	0	(7c)
				ماه سال	ongoo nor ho	_
Infiltration due to abise so	(60) (6b) (7a) ((7b) (/7a) —			anges per ho	_
•	ys, flues and fans = $(6a)+(6b)+(6b)+(6b)$ een carried out or is intended, proceed		30 e from (9) to (16)	÷ (5) =	0.14	(8)
Number of storeys in the	•		, , , ,	ſ	0	(9)
Additional infiltration				[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0	.25 for steel or timber frame o	r 0.35 for masonry con	struction		0	(11)
if both types of wall are po deducting areas of openir	resent, use the value corresponding t	o the greater wall area (after	•	_		_
	loor, enter 0.2 (unsealed) or 0	0.1 (sealed), else enter	0		0	(12)
If no draught lobby, en	ter 0.05, else enter 0				0	(13)
Percentage of windows	s and doors draught stripped			Ī	0	(14)
Window infiltration		0.25 - [0.2 x (14)	÷ 100] =		0	(15)
Infiltration rate		(8) + (10) + (11) -	+ (12) + (13) + (15) =	=	0	(16)
Air permeability value,	q50, expressed in cubic metro	es per hour per square	metre of envelo	pe area	5	(17)
If based on air permeabil	ity value, then $(18) = [(17) \div 20] +$	(8), otherwise (18) = (16)		Ī	0.39	(18)
Air permeability value applie	s if a pressurisation test has been do	ne or a degree air permeabil	lity is being used			_
Number of sides sheltere	d				2	(19)
Shelter factor		(20) = 1 - [0.075]	x (19)] =		0.85	(20)
Infiltration rate incorporat	ing shelter factor	$(21) = (18) \times (20)$	=	[0.33	(21)
Infiltration rate modified f	or monthly wind speed					
Jan Feb	Mar Apr May Jun	Jul Aug Se	p Oct No	ov Dec		
Monthly average wind sp	eed from Table 7					

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

Wind Facto	or (22a)m =	(22)m ÷	4										
(22a)m= 1.2	27 1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjusted in	filtration rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.4	1	0.4	0.36	0.35	0.31	0.31	0.3	0.33	0.35	0.37	0.39]	
	<i>effective air</i> nical ventila	•	rate for t	ne appli	cable ca	se						0	(23a)
	air heat pump		endix N, (2	23b) = (23a	ı) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)			0	(23b)
	with heat reco											0	(23c)
a) If bala	nced mech	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (22)	2b)m + (23b) × [1 – (23c)	÷ 100]	`` ′
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If bala	nced mech	anical ve	entilation	without	heat red	covery (N	лV) (24b	m = (22	2b)m + (23b)	•	-	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
,	le house ex 2b)m < 0.5 >			•	•				5 × (23b	o)			
(24c)m= 0	<u> </u>	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If natu	ıral ventilati	on or wh	ole hous	se positiv	/e input	ventilatio	on from	oft				J	
if (22	(2b)m = 1, th	en (24d)	m = (22l	b)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m = 0.5	0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(24d)
	air change	1	`	í ì	``	``		` 		•	•	1	()
(25)m= 0.5	59 0.58	0.58	0.57	0.56	0.55	0.55	0.55	0.55	0.56	0.57	0.57		(25)
3. Heat los	sses and he	eat loss p	paramet	er:									
3. Heat los		ss	oarameto Openin m	ıgs	Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-value kJ/m²-l		A X k kJ/K
	IT Gros	ss	Openin	ıgs						K)			
ELEMEN	IT Gros area	ss	Openin	ıgs	A ,r	m² x	W/m2	2K = [(W/	K)			kJ/K
ELEMEN Doors	IT Gros area ype 1	ss	Openin	ıgs	A ,r	m ² x x 1	W/m2	eK = [0.04] = [(W/ 2.412	K)			kJ/K (26)
ELEMEN Doors Windows T	IT Gros area Type 1 Type 2	ss	Openin	ıgs	A ,r 2.01	m² x x1. x1.	W/m2 1.2 /[1/(1.4)+	$ = \begin{bmatrix} 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \end{bmatrix} $	2.412 1.72	K)			kJ/K (26) (27)
ELEMEN Doors Windows T Windows T	T Gros area Type 1 Type 2 Type 3	ss	Openin	ıgs	A ,r 2.01 1.3 0.87	x1. x1. x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	$ \begin{array}{ccc} 2K & & & \\ & & & \\ 0.04] & = & \\ 0.04] & = & \\ 0.04] & = & \\ \end{array} $	2.412 1.72 1.15	K)			kJ/K (26) (27) (27)
ELEMEN Doors Windows T Windows T Windows T	Type 1 Type 2 Type 3 Type 4	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5	x1. x1. x1. x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		2.412 1.72 1.15 1.99	K)			kJ/K (26) (27) (27) (27)
Doors Windows T Windows T Windows T Windows T	Type 1 Type 2 Type 3 Type 4 Type 5	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5 0.53	x1. x1. x1. x1. x1. x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+		(W// 2.412 1.72 1.15 1.99 0.7	K)			kJ/K (26) (27) (27) (27) (27)
Doors Windows T Windows T Windows T Windows T Windows T Windows T	T Gros area Type 1 Type 2 Type 3 Type 4 Type 5 Type 6	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5 0.53	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	$ \begin{array}{ccc} & & & \\ & & & \\ & & \\ $	(W// 2.412 1.72 1.15 1.99 0.7	K)			kJ/K (26) (27) (27) (27) (27) (27)
Doors Windows T	Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	$ \begin{array}{ccc} $	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22	K)			kJ/K (26) (27) (27) (27) (27) (27)
ELEMEN Doors Windows T	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K = [] $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94	K)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Doors Windows T	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8	ss	Openin	ıgs	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K = [] $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
ELEMEN Doors Windows T	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8	ss (m²)	Openin	gs 1 ²	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46 1.46 0.99	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K = [] $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$ $0.04] = []$	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94 1.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMEN Doors Windows T Floor	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8 Type 9	ss (m²)	Openin	gs 1 ²	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46 0.99 46.56	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94 1.94 1.31 5.1216				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows T Roor	Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9	ss (m²)	Openin m	gs 1 ²	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46 0.99 46.56 85.77	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	K	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94 1.94 1.31 5.1216				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMEN Doors Windows T Roof	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8 Type 9	ss (m²)	Openin m	gs 1 ²	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46 0.99 46.56 85.77	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	K	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94 1.94 1.31 5.1216				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Windows T T Windows T Windows T T T T T T T T T T T T T T T T T T T	Type 1 Type 2 Type 3 Type 5 Type 6 Type 7 Type 8 Type 9	6 56 5, m ²	Openin m 13.8 0	igs 1 ² 3 indow U-ve	A ,r 2.01 1.3 0.87 1.5 0.53 0.53 3.18 1.46 1.46 0.99 46.56 85.77 46.56 192.7 42.18 alue calcul	x1.	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19 0.11	K	(W// 2.412 1.72 1.15 1.99 0.7 0.7 4.22 1.94 1.94 1.31 5.1216 16.3 5.12		kJ/m²-l	k 	kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

пеат сарасп	y Cm = S((Axk)						((28)	.(30) + (32	2) + (32a)	(32e) =	18406.14	(34)
Thermal mas	•	` '	P = Cm -	- TFA) ir	n kJ/m²K			Indica	tive Value:	Low		100	(35)
For design asse	•	`		,			ecisely the	indicative	values of	TMP in Ta	able 1f	100	
can be used ins													_
Thermal brid	•	,			•	K						15.19	(36)
Total fabric h	0 0	are not kn	OWII (30) =	= 0.03 X (3	1)			(33) +	(36) =			59.82	(37)
Ventilation h	eat loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5)			`
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 42.85	42.61	42.36	41.22	41.01	40.02	40.02	39.83	40.4	41.01	41.44	41.89		(38)
Heat transfe	r coefficie	nt, W/K						(39)m	= (37) + (3	38)m		•	
(39)m= 102.6	7 102.42	102.18	101.04	100.83	99.83	99.83	99.65	100.22	100.83	101.26	101.71		
Heat loss pa	rameter (I	HLP), W/	′m²K						Average = = (39)m ÷	Sum(39) _{1.} (4)	12 /12=	101.04	(39)
(40)m= 1.11	1.11	1.11	1.1	1.09	1.08	1.08	1.08	1.09	1.09	1.1	1.1		
Number of d	avs in mo	nth (Tab	le 1a)			•	•	,	Average =	Sum(40) ₁ .	12 /12=	1.1	(40)
Jan	<u> </u>	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
	•	!				!							
4. Water he	eating ene	rgy requi	rement:								kWh/y	ear:	
Assumed oc		N										1	(40)
if TFA £ 13	3.9, N = 1	+ 1.76 x		`	,		, , -	·	ΓFA -13.		65		(42)
	3.9, N = 1 age hot wa nual average	ater usaç hot water	ge in litre	es per da 5% if the o	ay Vd,av Iwelling is	erage = designed t	(25 x N)	+ 36		9)	.22		(42)
if TFA £ 1: Annual avera Reduce the annual not more that 1.	3.9, N = 1 age hot wanual average 25 litres per	ater usaç hot water person per	ge in litre usage by a day (all w	es per da 5% if the d rater use, I	ay Vd,av welling is hot and co	erage = designed t ld)	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	.22	 	, ,
if TFA £ 13 Annual avera Reduce the ann	3.9, N = 1 age hot wanual average 25 litres per	ater usag hot water person per	ge in litre usage by a day (all w	es per da 5% if the d rater use, I	ay Vd,av dwelling is hot and co	erage = designed to	(25 x N) to achieve	+ 36		9)			, ,
if TFA £ 13 Annual avera Reduce the ann not more that 1.	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per	ater usag hot water person per	ge in litre usage by a day (all w	es per da 5% if the d rater use, I	ay Vd,av dwelling is hot and co	erage = designed to	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	.22		, ,
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06	ater usag hot water person per Mar r day for ea	ge in litre usage by a day (all w Apr ach month 95.28	es per da 5% if the da vater use, I May Vd,m = fat 91.39	ay Vd,av Iwelling is hot and co Jun ctor from 1	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39	+ 36 a water us Sep 95.28	Oct 99.17 Fotal = Sur	9) 97 Nov 103.06 m(44) ₁₁₂ =	Dec 106.95	1166.69	, ,
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06	ater usag hot water person per Mar r day for ea	ge in litre usage by a day (all w Apr ach month 95.28	es per da 5% if the da vater use, I May Vd,m = fat 91.39	ay Vd,av fwelling is that and co Jun ctor from 87.5	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39	+ 36 a water us Sep 95.28	Oct 99.17 Fotal = Sur	9) 97 Nov 103.06 m(44) ₁₁₂ =	Dec 106.95	1166.69	(43)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06	ater usag hot water person per Mar r day for ea	ge in litre usage by a day (all w Apr ach month 95.28	es per da 5% if the da vater use, I May Vd,m = fat 91.39	ay Vd,av Iwelling is hot and co Jun ctor from 1	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39	+ 36 a water us Sep 95.28 0 kWh/mon	Oct 99.17 Fotal = Sur th (see Ta	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1 141.44	.22 Dec 106.95 c, 1d)		(43)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71	Mar 99.17	ge in litre usage by a day (all w Apr ach month 95.28 culated mo	es per da 5% if the a a a a b a b a	ay Vd,av Iwelling is that and co Jun ctor from 1 87.5	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 9Tm / 3600 109.87	+ 36 a water us Sep 95.28 0 kWh/mon	Oct 99.17 Fotal = Sur th (see Ta	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1	.22 Dec 106.95 c, 1d)	1166.69 1529.71	(43)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9 Energy content (45)m= 158.6	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71	Mar 99.17	ge in litre usage by a day (all w Apr ach month 95.28 culated mo	es per da 5% if the a a a a b a b a	ay Vd,av Iwelling is that and co Jun ctor from 1 87.5	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 9Tm / 3600 109.87	+ 36 a water us Sep 95.28 0 kWh/mon	Oct 99.17 Fotal = Sur th (see Ta	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1 141.44	.22 Dec 106.95 c, 1d)		(43)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.79 Water storage	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71 s water heati 9 20.81 ge loss:	Mar r day for ea 99.17 used - cale 143.14 ng at point 21.47	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no	es per da 5% if the a rater use, I May Vd,m = fa 91.39 onthly = 4. 119.74 o hot water 17.96	ay Vd,av Iwelling is hot and co Jun ctor from 1 87.5 190 x Vd,r 103.33 r storage),	erage = designed to ld) Jul Table 1c x 87.5 m x nm x E 95.75 enter 0 in 14.36	(25 x N) to achieve Aug (43) 91.39 07m / 3600 109.87 boxes (46) 16.48	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 1 to (61) 16.68	Oct 99.17 Fotal = Sur 129.57 Fotal = Sur 19.44	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1 141.44 m(45) ₁₁₂ =	.22 Dec 106.95 c, 1d)		(43) (44) (45)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.79 Water storage Storage volu	3.9, N = 1 age hot wa aual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71 s water heati 9 20.81 ge loss: Ime (litres)	Mar r day for ea 99.17 used - calc 143.14 ng at point 21.47	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no	es per da 5% if the orater use, I May Vd,m = far 91.39 onthly = 4. 119.74 o hot water 17.96 olar or W	ay Vd,av Iwelling is that and co	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 07m / 3600 109.87 boxes (46) 16.48 within sa	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 1 to (61) 16.68	Oct 99.17 Fotal = Sur 129.57 Fotal = Sur 19.44	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1 141.44 m(45) ₁₁₂ = 21.22	.22 Dec 106.95 c, 1d)		(43) (44) (45)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usage (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.75 Water storage Storage volu If community Otherwise if	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71 s water heati 9 20.81 ge loss: Ime (litres) y heating a no stored	ater usage hot water person per Mar r day for ea 99.17 used - call 143.14 ing at point 21.47 including and no tall and no tall and no tall and	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no 18.72 ag any so ank in dw	es per da 5% if the of 5% if th	ay Vd,av lwelling is hot and co Jun ctor from 87.5 190 x Vd,r 103.33 r storage), 15.5 /WHRS	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 7m / 3600 109.87 boxes (46) 16.48 within sa (47)	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 1 to (61) 16.68 ame vess	Oct 99.17 Total = Sunth (see Tail 129.57) Total = Sunth 19.44 Sel	9) Nov 103.06 m(44) ₁₁₂ = sbles 1b, 1 141.44 m(45) ₁₁₂ = 21.22	.22 Dec 106.95 c, 1d) 153.59		(43) (44) (45) (46)
if TFA £ 1: Annual avera Reduce the ann not more that 1: Jan Hot water usage (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.75 Water storage Storage volu If community	3.9, N = 1 age hot wa aual average 25 litres per a Feb e in litres per 5 103.06 of hot water 6 138.71 a water heatif 9 20.81 ge loss: Ime (litres) y heating a no stored ge loss:	Mar r day for ear 143.14 199.17 143.14 199.17 143.14 199.17	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no 18.72 ag any so nk in dw er (this in	es per da 5% if the o rater use, I May Vd,m = far 91.39 onthly = 4. 119.74 o hot water 17.96 olar or W velling, e acludes i	ay Vd,av Iwelling is that and co Jun ctor from 1 87.5 190 x Vd,r 103.33 r storage), 15.5 /WHRS Inter 110 Instantar	erage = designed to ld) Jul Table 1c x 87.5 m x nm x E 95.75 enter 0 in 14.36 storage 0 litres in neous co	(25 x N) to achieve Aug (43) 91.39 7m / 3600 109.87 boxes (46) 16.48 within sa (47)	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 1 to (61) 16.68 ame vess	Oct 99.17 Total = Sunth (see Tail 129.57) Total = Sunth 19.44 Sel	9) Nov 103.06 m(44) ₁₁₂ = sbles 1b, 1 141.44 m(45) ₁₁₂ = 21.22	.22 Dec 106.95 c, 1d) 153.59		(43) (44) (45) (46)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.79 Water storag Storage volu If community Otherwise if Water storag	3.9, N = 1 age hot wa nual average 25 litres per Feb e in litres per 5 103.06 of hot water 6 138.71 s water heating 9 20.81 ge loss: Ime (litres) 7 heating a no stored ge loss: acturer's de	Mar r day for ear 143.14 ang at point 21.47 including and no talk hot water declared learer declarer	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no 18.72 ag any so ank in dw er (this in	es per da 5% if the o rater use, I May Vd,m = far 91.39 onthly = 4. 119.74 o hot water 17.96 olar or W velling, e acludes i	ay Vd,av Iwelling is that and co Jun ctor from 1 87.5 190 x Vd,r 103.33 r storage), 15.5 /WHRS Inter 110 Instantar	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 7m / 3600 109.87 boxes (46) 16.48 within sa (47)	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 1 to (61) 16.68 ame vess	Oct 99.17 Total = Sunth (see Tail 129.57) Total = Sunth 19.44 Sel	9) Nov 103.06 m(44) ₁₁₂ = 10bles 1b, 1 141.44 m(45) ₁₁₂ = 21.22	.22 Dec 106.95 c, 1d) 153.59 23.04		(43) (44) (45) (46) (47)
if TFA £ 1: Annual avera Reduce the ann not more that 1. Jan Hot water usag (44)m= 106.9 Energy content (45)m= 158.6 If instantaneous (46)m= 23.75 Water storag Storage volution If community Otherwise if Water storag a) If manufa	3.9, N = 1 age hot wa aual average 25 litres per 1	ater usage hot water person per Mar r day for ea 99.17 used - calc 143.14 ing at point 21.47) including and no talc hot water eclared learn Table	ge in litre usage by a day (all w Apr ach month 95.28 culated mo 124.79 of use (no 18.72 ag any so ank in dw er (this in oss facto 2b	es per da 5% if the of	ay Vd,av Iwelling is that and co Jun ctor from 1 87.5 190 x Vd,r 103.33 r storage), 15.5 /WHRS Inter 110 Instantar	erage = designed to designed t	(25 x N) to achieve Aug (43) 91.39 7m / 3600 109.87 boxes (46) 16.48 within sa (47)	+ 36 a water us Sep 95.28 0 kWh/mon 111.18 16.68 ame vess ers) ente	Oct 99.17 Total = Sunth (see Tail 129.57) Total = Sunth 19.44 Sel	9) Nov 103.06 m(44) ₁₁₂ = ables 1b, 1 141.44 m(45) ₁₁₂ = 21.22 47) 1 0	Dec 106.95 c, 1d) 153.59 23.04		(43) (44) (45) (46) (47) (48)

Hot water storage loss factor from Tab	le 2 (kWh/litre/da	ay)					0		(51)		
If community heating see section 4.3								1			
Volume factor from Table 2a						-	0		(52)		
Temperature factor from Table 2b							0		(53)		
Energy lost from water storage, kWh/y	ear	((47) x (51)	x (52) x (5	53) =		0		(54)		
Enter (50) or (54) in (55)						0.	71		(55)		
Water storage loss calculated for each	month		((56)m = (55) × (41)r	n						
(56)m= 22.1 19.96 22.1 21.38	22.1 21.38	22.1	22.1	21.38	22.1	21.38	22.1		(56)		
If cylinder contains dedicated solar storage, (57)	$m = (56)m \times [(50) - ($	[H11)] ÷ (50)), else (57	7)m = (56)	m where (H11) is fro	m Append	ix H			
(57)m= 22.1 19.96 22.1 21.38	22.1 21.38	22.1	22.1	21.38	22.1	21.38	22.1		(57)		
Primary circuit loss (annual) from Table	e 3						0		(58)		
Primary circuit loss calculated for each	month (59) m = $($	(58) ÷ 36	5 × (41)	m							
(modified by factor from Table H5 if	there is solar wat	ter heatin	ng and a	cylinde	thermo	stat)					
(59)m= 23.26 21.01 23.26 22.51	23.26 22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)		
Combi loss calculated for each month	(61) m = $(60) \div 36$	65 × (41)	m								
(61)m= 0 0 0 0	0 0	0	0	0	0	0	0		(61)		
Total heat required for water heating care	alculated for eac	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m			
(62)m= 203.96 179.68 188.5 168.69	165.1 147.22	141.11	155.23	155.08	174.93	185.34	198.95		(62)		
Solar DHW input calculated using Appendix G o	r Appendix H (negati	ve quantity) (enter '0'	if no sola	r contributi	on to wate	r heating)				
(add additional lines if FGHRS and/or							-				
(63)m= 0 0 0 0	0 0	0	0	0	0	0	0		(63)		
Output from water heater	!										
(64)m= 203.96 179.68 188.5 168.69	165.1 147.22	141.11	155.23	155.08	174.93	185.34	198.95				
	<u> </u>	1	Outp	out from wa	ater heate	r (annual)₁	12	2063.78	(64)		
Heat gains from water heating, kWh/m	onth 0.25 ´ [0.85	× (45)m	+ (61)m	n1 + 0.8 x	(46)m	+ (57)m	+ (59)m	1	•		
(65)m= 89.02 78.9 83.88 76.61	76.1 69.47	. ` ′ .			L(/	· ,	_ ` /				
include (57)m in calculation of (65)m		68.12	72.82	72.09	79.37	82.15	87.36	. –	(65)		
include (37 JH) in calculation of (63)III	only if cylinder i			72.09				eating	(65)		
				72.09				eating	(65)		
5. Internal gains (see Table 5 and 5a				72.09				eating	(65)		
5. Internal gains (see Table 5 and 5a Metabolic gains (Table 5), Watts):	s in the d	lwelling	72.09 or hot w	ater is fr	om com	munity h	eating	(65)		
5. Internal gains (see Table 5 and 5a Metabolic gains (Table 5), Watts Jan Feb Mar Apr): May Jun	s in the d	lwelling Aug	72.09 or hot we	ater is fr	om com	munity h	eating			
5. Internal gains (see Table 5 and 5a Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22	May Jun 159.22 159.22	Jul 159.22	Aug 159.22	72.09 or hot was Sep 159.22	ater is fr	om com	munity h	eating	(65)		
5. Internal gains (see Table 5 and 5at Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix	May Jun 159.22 159.22 L, equation L9 o	Jul 159.22 r L9a), al	Aug 159.22 so see	72.09 or hot was Sep 159.22 Table 5	Oct	Nov 159.22	Dec	eating	(66)		
5. Internal gains (see Table 5 and 5at Metabolic gains (Table 5), Watts Jan Feb Mar Apr	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43	Jul 159.22 r L9a), al	Aug 159.22 so see 28.7	72.09 or hot was Sep 159.22 Table 5 38.52	Oct 159.22	om com	munity h	eating			
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L	Jul 159.22 r L9a), al 22.08	Aug 159.22 so see 28.7 3a), also	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal	Oct 159.22 48.91 ole 5	Nov 159.22 57.09	Dec 159.22 60.86	eating	(66) (67)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25	Jul 159.22 r L9a), al 22.08 13 or L13	Aug 159.22 so see 28.7 3a), also	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97	Oct 159.22 48.91 ole 5 297.15	Nov 159.22	Dec	eating	(66)		
5. Internal gains (see Table 5 and 5at Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a)	Aug 159.22 so see 28.7 3a), also 267.49 , also se	72.09 or hot was Sep 159.22 Table 5 38.52 see Table 276.97	Oct 159.22 48.91 ble 5 297.15	Nov 159.22 57.09	Dec 159.22 60.86	eating	(66) (67) (68)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25	Jul 159.22 r L9a), al 22.08 13 or L13	Aug 159.22 so see 28.7 3a), also	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97	Oct 159.22 48.91 ole 5 297.15	Nov 159.22 57.09	Dec 159.22 60.86	eating	(66) (67)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58 Pumps and fans gains (Table 5a)	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15 53.58 53.58	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a)	Aug 159.22 so see - 28.7 3a), also 267.49 , also se 53.58	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97 ee Table 53.58	Oct 159.22 48.91 ble 5 297.15	Nov 159.22 57.09 322.63	Dec 159.22 60.86	eating	(66) (67) (68) (69)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a)	Aug 159.22 so see 28.7 3a), also 267.49 , also se	72.09 or hot was Sep 159.22 Table 5 38.52 see Table 276.97	Oct 159.22 48.91 ble 5 297.15	Nov 159.22 57.09	Dec 159.22 60.86	eating	(66) (67) (68)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58 Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 Losses e.g. evaporation (negative value)	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15 53.58 53.58 3 3 es) (Table 5)	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a) 53.58	Aug 159.22 so see 28.7 3a), also 267.49 , also se 53.58	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97 ee Table 53.58	Oct 159.22 48.91 ole 5 297.15 5 53.58	Nov 159.22 57.09 322.63	Dec 159.22 60.86 346.58	eating	(66) (67) (68) (69) (70)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58 Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15 53.58 53.58	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a) 53.58	Aug 159.22 so see - 28.7 3a), also 267.49 , also se 53.58	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97 ee Table 53.58	Oct 159.22 48.91 ole 5 297.15 5 53.58	Nov 159.22 57.09 322.63	Dec 159.22 60.86 346.58	eating	(66) (67) (68) (69)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58 Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 Losses e.g. evaporation (negative value)	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15 53.58 53.58 3 3 es) (Table 5)	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a) 53.58	Aug 159.22 so see 28.7 3a), also 267.49 , also se 53.58	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97 ee Table 53.58	Oct 159.22 48.91 ole 5 297.15 5 53.58	Nov 159.22 57.09 322.63	Dec 159.22 60.86 346.58	eating	(66) (67) (68) (69) (70)		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr (66)m= 159.22 159.22 159.22 159.22 Lighting gains (calculated in Appendix (67)m= 59.21 52.59 42.77 32.38 Appliances gains (calculated in Appendix (68)m= 362.57 366.34 356.85 336.67 Cooking gains (calculated in Appendix (69)m= 53.58 53.58 53.58 53.58 Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 Losses e.g. evaporation (negative value) (71)m= -106.15 -106.15 -106.15 -106.15	May Jun 159.22 159.22 L, equation L9 o 24.2 20.43 dix L, equation L 311.19 287.25 L, equation L15 53.58 53.58 3 3 es) (Table 5)	Jul 159.22 r L9a), al 22.08 13 or L13 271.25 or L15a) 53.58	Aug 159.22 so see 28.7 3a), also 267.49 , also se 53.58	72.09 or hot was Sep 159.22 Table 5 38.52 see Tal 276.97 ee Table 53.58	Oct 159.22 48.91 ole 5 297.15 5 53.58	Nov 159.22 57.09 322.63	Dec 159.22 60.86 346.58	eating	(66) (67) (68) (69) (70)		

Total i	nternal	gains =	:					(66))m + (67)m	+ (68	3)m +	+ (69)m + (70)m +	(71)m + (72)	m		
(73)m=	651.08	645.98	622.01	58	85.1	547.33	5	13.82	494.54	503	.71	525.25	562.39	9 603.45	634.5		(73)
6. Sol	ar gains	s:															
Solar g	ains are c	alculated	using sola	ar flux	x from	Table 6a	and	l assoc	iated equa	tions	to co	nvert to the	e applic	able orientat	on.		
Orienta		Access Fable 6d			Area m²			Flu Tal	ıx ble 6a		Т	g_ able 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	×	Г	0.5	.3	X		10.63	x		0.63	T x	0.7		1.72	(74)
North	0.9x	0.77	x	\vdash	0.5		X	_	10.63	X		0.63	ا ×	0.7	╡ -	1.72	(74)
North	0.9x	0.77	x	\vdash	0.5		x	\vdash	20.32	X		0.63	X	0.7	= =	3.29	(74)
North	0.9x	0.77	x	\vdash	0.5		x	\vdash	20.32	x		0.63	X	0.7	= =	3.29	(74)
North	0.9x	0.77	×	F	0.5		X	—	34.53	x		0.63	X	0.7	╡ -	5.59	(74)
North	0.9x	0.77	×	F	0.5	3	X	3	34.53	x		0.63	×	0.7		5.59	(74)
North	0.9x	0.77	×		0.5	3	X	5	55.46	x		0.63	×	0.7		8.98	(74)
North	0.9x	0.77	×	Ī	0.5	3	X	5	55.46	x		0.63	×	0.7	_ =	8.98	(74)
North	0.9x	0.77	×		0.5	3	X	7	74.72	x		0.63	×	0.7		12.1	(74)
North	0.9x	0.77	×		0.5	3	X	7	74.72	x		0.63	x	0.7	=	12.1	(74)
North	0.9x	0.77	X		0.5	3	X	7	79.99	x		0.63	x	0.7	=	12.96	(74)
North	0.9x	0.77	X		0.5	3	X	7	79.99	x		0.63	x	0.7	=	12.96	(74)
North	0.9x	0.77	X		0.5	3	X	7	74.68	x		0.63	x	0.7	=	12.1	(74)
North	0.9x	0.77	X		0.5	3	X	7	74.68	x		0.63	x	0.7	=	12.1	(74)
North	0.9x	0.77	X		0.5	3	X	5	59.25	X		0.63	X	0.7	=	9.6	(74)
North	0.9x	0.77	X		0.5	3	X	5	59.25	x		0.63	X	0.7	=	9.6	(74)
North	0.9x	0.77	X		0.5	3	X		11.52	x		0.63	X	0.7	=	6.72	(74)
North	0.9x	0.77	X		0.5	3	X	4	11.52	X		0.63	X	0.7	=	6.72	(74)
North	0.9x	0.77	X		0.5	3	X	2	24.19	X		0.63	X	0.7	=	3.92	(74)
North	0.9x	0.77	×		0.5	3	X	2	24.19	X		0.63	X	0.7	=	3.92	(74)
North	0.9x	0.77	×		0.5	3	X	1	13.12	X		0.63	X	0.7	=	2.12	(74)
North	0.9x	0.77	×		0.5	3	X	1	13.12	X		0.63	X	0.7	=	2.12	(74)
North	0.9x	0.77	X		0.5	3	X		8.86	X		0.63	X	0.7	=	1.44	(74)
North	0.9x	0.77	×		0.5	3	X		8.86	X		0.63	X	0.7	=	1.44	(74)
East	0.9x	0.77	X		1.3	3	X	1	19.64	X		0.63	X	0.7	=	7.8	(76)
East	0.9x	0.77	X	L	0.8	7	X	1	19.64	X		0.63	X	0.7	=	5.22	(76)
East	0.9x	0.77	X	L	1.4	6	X	1	19.64	X		0.63	X	0.7	=	8.76	(76)
East	0.9x	0.77	X		1.3	3	X	3	38.42	X		0.63	X	0.7	=	15.26	(76)
East	0.9x	0.77	X		0.8	7	X	3	38.42	X		0.63	X	0.7	=	10.22	(76)
East	0.9x	0.77	×		1.4	6	X	3	38.42	X		0.63	X	0.7	=	17.14	(76)
East	0.9x	0.77	×		1.3	3	X	6	3.27	X		0.63	X	0.7	=	25.14	(76)
East	0.9x	0.77	×		0.8	7	X	6	63.27	X		0.63	X	0.7	=	16.82	(76)
East	0.9x	0.77	X		1.4	6	X		3.27	x		0.63	X	0.7	=	28.23	(76)
East	0.9x	0.77	×		1.3	3	X	9	92.28	X		0.63	X	0.7	=	36.66	(76)

			_		_		_				_		_
East	0.9x	0.77	X	0.87	X	92.28	X	0.63	X	0.7	=	24.54	(76)
East	0.9x	0.77	X	1.46	x	92.28	X	0.63	x	0.7	=	41.17	(76)
East	0.9x	0.77	X	1.3	X	113.09	X	0.63	X	0.7	=	44.93	(76)
East	0.9x	0.77	X	0.87	X	113.09	X	0.63	x	0.7	=	30.07	(76)
East	0.9x	0.77	X	1.46	x	113.09	X	0.63	X	0.7	=	50.46	(76)
East	0.9x	0.77	X	1.3	X	115.77	X	0.63	X	0.7	=	46	(76)
East	0.9x	0.77	X	0.87	x	115.77	X	0.63	X	0.7	=	30.78	(76)
East	0.9x	0.77	X	1.46	x	115.77	X	0.63	x	0.7	=	51.66	(76)
East	0.9x	0.77	X	1.3	X	110.22	X	0.63	X	0.7	=	43.79	(76)
East	0.9x	0.77	X	0.87	x	110.22	X	0.63	X	0.7	=	29.31	(76)
East	0.9x	0.77	X	1.46	x	110.22	X	0.63	X	0.7	=	49.18	(76)
East	0.9x	0.77	X	1.3	x	94.68	X	0.63	X	0.7	=	37.61	(76)
East	0.9x	0.77	X	0.87	x	94.68	X	0.63	x	0.7	=	25.17	(76)
East	0.9x	0.77	X	1.46	x	94.68	X	0.63	x	0.7	=	42.24	(76)
East	0.9x	0.77	X	1.3	x	73.59	X	0.63	x	0.7	=	29.24	(76)
East	0.9x	0.77	X	0.87	x	73.59	x	0.63	x	0.7	=	19.57	(76)
East	0.9x	0.77	X	1.46	x	73.59	X	0.63	x	0.7	=	32.84	(76)
East	0.9x	0.77	X	1.3	x	45.59	X	0.63	x	0.7	=	18.11	(76)
East	0.9x	0.77	X	0.87	x	45.59	x	0.63	x	0.7	=	12.12	(76)
East	0.9x	0.77	X	1.46	x	45.59	x	0.63	x	0.7	=	20.34	(76)
East	0.9x	0.77	X	1.3	x	24.49	X	0.63	x	0.7	=	9.73	(76)
East	0.9x	0.77	x	0.87	x	24.49	X	0.63	x	0.7	=	6.51	(76)
East	0.9x	0.77	X	1.46	x	24.49	x	0.63	x	0.7	=	10.93	(76)
East	0.9x	0.77	X	1.3	x	16.15	X	0.63	x	0.7	=	6.42	(76)
East	0.9x	0.77	X	0.87	x	16.15	x	0.63	x	0.7	=	4.29	(76)
East	0.9x	0.77	X	1.46	x	16.15	X	0.63	x	0.7	=	7.21	(76)
West	0.9x	0.77	X	1.5	x	19.64	X	0.63	x	0.7	=	9	(80)
West	0.9x	0.77	X	3.18	x	19.64	x	0.63	x	0.7	=	19.09	(80)
West	0.9x	0.77	X	1.46	x	19.64	x	0.63	x	0.7	=	8.76	(80)
West	0.9x	0.77	X	0.99	x	19.64	X	0.63	x	0.7	=	5.94	(80)
West	0.9x	0.77	X	1.5	x	38.42	x	0.63	x	0.7	=	17.61	(80)
West	0.9x	0.77	X	3.18	x	38.42	x	0.63	x	0.7	=	37.34	(80)
West	0.9x	0.77	X	1.46	x	38.42	X	0.63	x	0.7	=	17.14	(80)
West	0.9x	0.77	X	0.99	x	38.42	x	0.63	x	0.7	=	11.62	(80)
West	0.9x	0.77	X	1.5	x	63.27	x	0.63	x	0.7	=	29.01	(80)
West	0.9x	0.77	x	3.18	x	63.27	x	0.63	x	0.7	=	61.49	(80)
West	0.9x	0.77	x	1.46	x	63.27	x	0.63	x	0.7	j =	28.23	(80)
West	0.9x	0.77	x	0.99	x	63.27	x	0.63	x	0.7	j =	19.14	(80)
West	0.9x	0.77	x	1.5	x	92.28	x	0.63	x	0.7	j =	42.3	(80)
West	0.9x	0.77	x	3.18	x	92.28	x	0.63	x	0.7	j =	89.68	(80)
West	0.9x	0.77	x	1.46	x	92.28	x	0.63	x	0.7	j =	41.17	(80)
	-		-		-		-		•		•		_

	_					_									_		_
West	0.9x	0.77	X		0.99	X		92.28	X	0.63	×		0.7	=	• <u>L</u>	27.92	(80)
West	0.9x	0.77	X		1.5	x	1	13.09	X	0.63	×		0.7	=	= [51.84	(80)
West	0.9x	0.77	X		3.18	X	1	13.09	X	0.63	×		0.7		- [109.91	(80)
West	0.9x	0.77	X		1.46	X	1	13.09	X	0.63	Х		0.7		- [50.46	(80)
West	0.9x	0.77	×		0.99	X	1	13.09	x	0.63	Х		0.7		- [34.22	(80)
West	0.9x	0.77	X		1.5	X	1	15.77	x	0.63	X		0.7		- [53.07	(80)
West	0.9x	0.77	X		3.18	x	1	15.77	x	0.63	×		0.7		= [112.51	(80)
West	0.9x	0.77	X		1.46	X	1	15.77	x	0.63	X		0.7		- [51.66	(80)
West	0.9x	0.77	X		0.99	X	1	15.77	x	0.63	X		0.7		- [35.03	(80)
West	0.9x	0.77	×		1.5	x	1	10.22	X	0.63	Х		0.7		- [50.53	(80)
West	0.9x	0.77	X		3.18	x	1	10.22	x	0.63	Х		0.7		- [107.12	(80)
West	0.9x	0.77	X		1.46	X	1	10.22	X	0.63	Х		0.7		- [49.18	(80)
West	0.9x	0.77	×		0.99	x	1	10.22	x	0.63	Х		0.7		- [33.35	(80)
West	0.9x	0.77	X		1.5	x	9	94.68	x	0.63	Х		0.7		- [43.4	(80)
West	0.9x	0.77	X		3.18	x	9	94.68	X	0.63	Х		0.7	-	- [92.01	(80)
West	0.9x	0.77	×		1.46	x	9	94.68	x	0.63	×		0.7		- [42.24	(80)
West	0.9x	0.77	X		0.99	x	9	94.68	X	0.63	Х		0.7	-	- [28.64	(80)
West	0.9x	0.77	X		1.5	x	7	73.59	X	0.63	Х		0.7	-	- [33.73	(80)
West	0.9x	0.77	X		3.18	x	7	73.59	x	0.63	Х		0.7	-	- [71.52	(80)
West	0.9x	0.77	X		1.46	X	7	73.59	x	0.63	X		0.7		-	32.84	(80)
West	0.9x	0.77	X		0.99	X	7	73.59	x	0.63	X		0.7		- [22.26	(80)
West	0.9x	0.77	×		1.5	X		15.59	x	0.63	×		0.7		- [20.9	(80)
West	0.9x	0.77	X		3.18	X	4	15.59	x	0.63	Х		0.7		-	44.31	(80)
West	0.9x	0.77	X		1.46	X		15.59	x	0.63	X		0.7		- [20.34	(80)
West	0.9x	0.77	×		0.99	X		15.59	x	0.63	X		0.7		- [13.79	(80)
West	0.9x	0.77	X		1.5	x	2	24.49	X	0.63	Х		0.7	-	-	11.23	(80)
West	0.9x	0.77	X		3.18	x	2	24.49	X	0.63	Х		0.7	-	- [23.8	(80)
West	0.9x	0.77	X		1.46	x	2	24.49	x	0.63	Х		0.7		- [10.93	(80)
West	0.9x	0.77	X		0.99	x	2	24.49	X	0.63	Х		0.7	-	-	7.41	(80)
West	0.9x	0.77	X		1.5	X	1	16.15	x	0.63	Х		0.7		- [7.4	(80)
West	0.9x	0.77	X		3.18	X	1	16.15	x	0.63	X		0.7		- [15.7	(80)
West	0.9x	0.77	X		1.46	x	1	16.15	x	0.63	×		0.7		= [7.21	(80)
West	0.9x	0.77	×		0.99	x	1	16.15	x	0.63	×		0.7		= [4.89	(80)
7-		watts, ca		_						ı = Sum(74)m					_		
(83)m=	68.03	132.92	219.25	321.			406.61	386.63	330	.52 255.44	157	.75	84.78	55.98	3		(83)
		nternal a		`	`	_	` '		r		T						(0.1)
(84)m=	719.11	778.91	841.27	906.	52 943.4	43	920.43	881.17	834	.23 780.69	720	14	688.23	690.4	8		(84)
7. Mea	an inter	nal temp	erature	(hea	ing seas	on)											
Temp	erature	during h	eating	perioc	s in the I	iving	garea	from Tal	ole 9,	Th1 (°C)						21	(85)
Utilisa		tor for ga			1	Ť		<u> </u>			i	-			_		
	Jan	Feb	Mar	Ap	or Ma	ay	Jun	Jul	A	ug Sep	0	ct	Nov	Dec			

(86)m= 0	.94 0.92	0.89	0.83	0.73	0.59	0.46	0.49	0.68	0.85	0.92	0.95		(86)
Mean int	ernal tempe	rature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				•	
	3.96 19.17	19.56	20.07	20.5	20.81	20.93	20.91	20.69	20.13	19.47	18.92		(87)
Tempera	ture during l	neating p	eriods ir	rest of	dwellina	from Ta	able 9. T	h2 (°C)		•	•		
	9.99 19.99	19.99	20	20.01	20.01	20.01	20.02	20.01	20.01	20	20		(88)
Litilisation	n factor for g	ains for	rest of d	welling	h2 m (se	e Tahle	9a)					l	
	.93 0.91	0.88	0.8	0.68	0.52	0.37	0.41	0.62	0.82	0.91	0.94		(89)
Moon int	ernal tempe	ratura in	the rest	of dwolli	na T2 (f	ollow etc	no 2 to .	Tin Tabl	0.00		<u> </u>		
	7.28 17.59	18.14	18.86	19.45	19.84	19.97	19.95	19.7	18.97	18.03	17.23		(90)
(00)	11.00	10.11	10.00	10.10	10.01	10.01	10.00		<u> </u>	g area ÷ (4		0.17	(91)
			41 1		\ 6		(4 (1	A) TO			,	0.17	
	ernal tempe	ı — —				I			40.40	40.07	47.54	1	(92)
` ′	7.56 17.85 justment to t	18.38	19.06	19.63	20	20.13	20.11	19.87	19.16	18.27	17.51		(92)
· · · · · · · · · · · · · · · · · · ·	7.41 17.7	18.23	18.91	19.48	19.85	19.98	19.96	19.72	19.01	18.12	17.36		(93)
` ′	heating req	<u> </u>		10.10	10.00	10.00	10.00	10.72	10.01	10.12	17.00		(12)
	the mean in			re obtain	ed at ste	ep 11 of	Table 9	o, so tha	t Ti.m=(76)m an	d re-calc	culate	
	ation factor f		•			- 1			, (
J	lan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	n factor for g	1): I						Г			Ī	
(- /	0.88	0.84	0.77	0.66	0.51	0.36	0.4	0.6	0.79	0.87	0.91		(94)
	ains, hmGm	``	ŕ		407.05	004.00		470.54	505.00	004.55	000.04	1	(OE)
` ′	8.93 686.3	707.2	695.71	621.42	467.95	321.26	333.96	470.54	565.88	601.55	628.21		(95)
	average exte	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
` ′	s rate for me								l	'.'	7.2		(00)
	46.36 1311.37	1198.5	1011.42		523.92	337.13	354.92	563	848.36	1115.76	1338.58		(97)
	eating requir	ement fo	r each n	nonth, k\	Mh/mont	th = 0.02	24 x [(97	ı)m – (95)m] x (4	1)m			
(98)m= 51	8.88 420.05	365.52	227.31	120.95	0	0	0	0	210.17	370.23	528.52		
	•	•				•	Tota	l per year	(kWh/yea	r) = Sum(9	8)15,912 =	2761.64	(98)
Space he	eating requir	ement in	kWh/m²	/year								29.98	(99)
·	y requireme				vstems i	ncluding	ı micro-C	:HP)					
Space h	•	ito iria	ividual II	caming o	y Storrio 1	nordanig	TINOIO C	,, , , , , , , , , , , , , , , , , , ,					
•	of space hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fraction	of space hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fraction	of total heati	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
	y of main spa	•	-									93.2	(206)
·	y of seconda		•		n svstem	n %						0	(208)
_		· · ·			-					.			
	lan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
	eating requir 8.88 420.05	365.52	227.31	120.95	0	0	0	0	210.17	370.23	528.52		
										1 0, 0.20	1 020.02	1	(244)
	{[(98)m x (20 6.74 450.69	392.19	243.9	129.78	0	0	0	0	225.5	397.25	567.08		(211)
_ 33	5.7 7 750.09	1 002.19	270.0	120.70		<u> </u>		_		211) _{15,1012}		2963.13	(211)
								, ,,,,,	, =(-	₹15,1012	•	2300.13	

(215)m= 0 0 0	0 0	0	0	0	0	0	0	0		
	•			Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u>. </u>	0	(215
Water heating								•		_
Output from water heater (calculat	ted above) 68.69 165.1	147.22	141.11	155.23	155.08	174.93	185.34	198.95		
Efficiency of water heater	70.00			100.20				100.00	80.1	(216
	5.91 84.3	80.1	80.1	80.1	80.1	85.61	86.93	87.6		(217
Fuel for water heating, kWh/month	<u> </u>								•	
(219) m = (64) m x $100 \div (217)$ m (219)m = 233.09 205.81 217.03 19	96.35 195.85	183.8	176.16	193.8	193.61	204.35	213.21	227.12		
	- ! !			Tota	l = Sum(2	19a) ₁₁₂ =		l	2440.16	(219
Annual totals						k\	Wh/year	r	kWh/year	_
Space heating fuel used, main sys	stem 1								2963.13	
Water heating fuel used									2440.16	
Electricity for pumps, fans and ele	ctric keep-hot									
central heating pump:								30		(230
boiler with a fan-assisted flue								45		(230
Total electricity for the above, kWh	h/year			sum	of (230a).	(230g) =		Ī	75	(23
Electricity for lighting									418.27	(232
Electricity generated by PVs									-1364.85	= (233
										(
Total delivered energy for all uses	s (211)(221)	+ (231)	+ (232).	(237b)	=				4531.71	╡
Total delivered energy for all uses 10a. Fuel costs - individual heatir	, , , ,	+ (231)	+ (232).	(237b)	=				4531.71	(338
<u>. </u>	, , , ,	+ (231) Fu		(237b)	=	Fuel P	rice			╡
<u>. </u>	, , , ,	Fu		(237b)	=	Fuel P			4531.71 Fuel Cost £/year	╡
10a. Fuel costs - individual heatir	, , , ,	Fu kW	el	(237b)	=		12)	x 0.01 =	Fuel Cost	╡
<u> </u>	, , , ,	FuckW	el /h/year	(237b)	=	(Table	12)	x 0.01 = x 0.01 =	Fuel Cost £/year	(338
10a. Fuel costs - individual heating Space heating - main system 1 Space heating - main system 2	, , , ,	FuckW (211	el /h/year	(237b)	=	(Table	12) 8		Fuel Cost £/year	(338
10a. Fuel costs - individual heating Space heating - main system 1 Space heating - main system 2 Space heating - secondary	, , , ,	FuckW (211	el /h/year I) x B) x	(237b)	=	(Table 3.4	12) 8	x 0.01 =	Fuel Cost £/year 103.12	(240 (241)(242
10a. Fuel costs - individual heating Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	ng systems:	FuckW (211 (213 (215	el /h/year 1) x 3) x 5) x	(237b)	=	(Table 3.4 0 13.	12) 8 19	x 0.01 = x 0.01 =	Fuel Cost £/year 103.12 0	(240 (241 (242 (247
10a. Fuel costs - individual heatin	ng systems:	FuckW (211 (213 (215 (231	el /h/year /l) × // × // × // × // × // × // × //			(Table 3.4 0 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	12) 8 19 8	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	Fuel Cost £/year 103.12 0 0 84.92 9.89	(240
10a. Fuel costs - individual heating Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hote	ng systems:	FuckW (211 (213 (215 (231	el /h/year l) x 3) x 5) x 9)			(Table 3.4 0 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	Fuel Cost £/year 103.12 0 0 84.92 9.89	(240 (241 (242 (247
Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot	ng systems: t	FunkW (211 (213 (215 (231 parately	el /h/year l) x 3) x 5) x 9)			(Table 3.4 0 13.4 13.4 14 15 16 16 17 17 18 18 18 18 18 18 18 18	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to T	Fuel Cost £/year 103.12 0 0 84.92 9.89 Table 12a	(240 (241 (242 (243 (245
Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) Energy for lighting	ng systems: t	FuckW (211 (213 (215 (231 parately (232	el /h/year l) x 3) x 5) x 9)	licable a		(Table 3.4 0 13.4 13.4 14 15 16 16 17 17 18 18 18 18 18 18 18 18	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to T	Fuel Cost £/year 103.12 0 0 84.92 9.89 Table 12a 55.17	(240) (241) (242) (243) (243)
Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot if off-peak tariff, list each of (230a	ng systems: t a) to (230g) se e 12)	FuckW (211 (213 (215 (231 parately (232 one	el /h/year / / / / / / / / / / / / / / / / / / /	licable a		(Table 3.4 0 13.3 3.4 13.7 fuel prid 13.6	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	Fuel Cost £/year 103.12 0 0 84.92 9.89 Table 12a 55.17	(240 (241 (242 (243 (245 (250 (250
10a. Fuel costs - individual heating Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hote if off-peak tariff, list each of (230a) Energy for lighting Additional standing charges (Table	t a) to (230g) se e 12)	FuckW (211 (213 (215 (231 parately (232 one as need	el /h/year / / / / / / / / / / / / / / / / / / /	licable a		(Table 3.4 0 13.3 3.4 13.7 fuel prid 13.6	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	Fuel Cost £/year 103.12 0 0 84.92 9.89 Table 12a 55.17	(240 (241 (242 (243 (245 (250 (250

Energy cost factor (ECF) SAP rating (Section 12)	(255) x (256)] ÷ [(4) + 45.0] =		0.59 (257) 91.75 (258)
12a. CO2 emissions – Individual heating	systems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	640.04 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216	527.07 (264)
Space and water heating	(261) + (262) + (263) + (264)	4) =	1167.11 (265)
Electricity for pumps, fans and electric kee	ep-hot (231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	217.08 (268)
Energy saving/generation technologies Item 1		0.519 =	-708.36 (269)
Total CO2, kg/year		sum of (265)(271) =	714.76 (272)
CO2 emissions per m²		(272) ÷ (4) =	7.76 (273)
EI rating (section 14)			93 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3615.02 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2976.99 (264)
Space and water heating	(261) + (262) + (263) + (264)	4) =	6592.02 (265)
Electricity for pumps, fans and electric kee	ep-hot (231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1284.08 (268)
Energy saving/generation technologies Item 1		3.07	-4190.08 (269)
'Total Primary Energy		sum of (265)(271) =	3916.26 (272)

 $(272) \div (4) =$

Primary energy kWh/m²/year

(273)

42.51

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 19

Dwelling type: Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 291.84 (P1)

Transmission heat loss coefficient: 59.8

Summer heat loss coefficient: 351.65 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
East (W_106)	0	1
East (W_107)	0	1
West (W_108)	0	1
North (W_109)	0	1
North (W_110)	0	1
West (W_111)	0	1
West (W_112)	0	1
East (W_113)	0	1
West (W 114)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
East (W_106)	0.85	0.9	1	0.76	(P8)
East (W_107)	0.85	0.9	1	0.76	(P8)
West (W_108)	0.85	0.9	1	0.76	(P8)
North (W_109)	0.85	0.9	1	0.76	(P8)
North (W_110)	0.85	0.9	1	0.76	(P8)
West (W_111)	0.85	0.9	1	0.76	(P8)
West (W_112)	0.85	0.9	1	0.76	(P8)
East (W_113)	0.85	0.9	1	0.76	(P8)
West (W_114)	0.85	0.9	1	0.76	(P8)

Solar gains

Orientation		Area	Flux	g _	FF	Shading	Gains
East (W_106)	0.9 x	1.3	119.47	0.63	0.7	0.76	47.16
East (W_107)	0.9 x	0.87	119.47	0.63	0.7	0.76	31.56
West (W_108)	0.9 x	1.5	119.47	0.63	0.7	0.76	54.41
North (W_109)	0.9 x	0.53	82.12	0.63	0.7	0.76	13.22
North (W_110)	0.9 x	0.53	82.12	0.63	0.7	0.76	13.22
West (W_111)	0.9 x	3.18	119.47	0.63	0.7	0.76	115.35

SAP 2012 Overheating Assessment

West (W_112) East (W_113) West (W_114)	0.9 x 0.9 x 0.9 x	1.46 1.46 0.99	119.47 119.47 119.47	0.63 0.63 0.63	0.7 0.7 0.7	0.76 0.76 0.76 Total	52.96 52.96 35.91 416.75	(P3/P4)
Internal gains:								
				Ju	ne	July	August	
Internal gains				510	0.82	491.54	500.71	
Total summer gains				953	3.28	908.29	860.43	(P5)
Summer gain/loss ra	atio			2.7	1	2.58	2.45	(P6)
Mean summer exter		iture (Eas	t Anglia)	15.	4	17.6	17.6	
Thermal mass temp	erature incr	ement	0 ,	1.3		1.3	1.3	
Threshold temperat				19.	41	21.48	21.35	(P7)
Likelihood of high		nperature	•	No	t significant	Slight	Slight	

Slight

Assessment of likelihood of high internal temperature: