Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 *Printed on 29 November 2022 at 15:11:03*

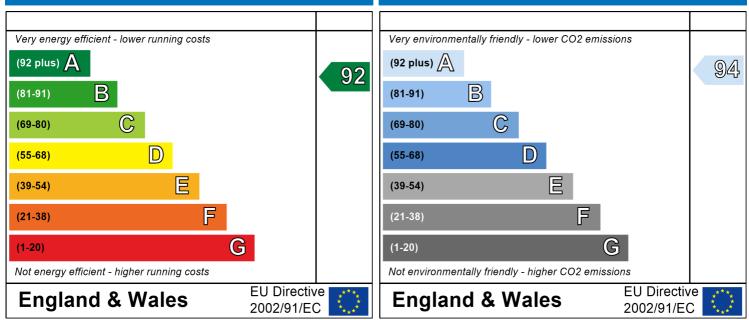
Project Information				
Assessed Dr.			Duilding Type	Carri data ahad Ulayaa
Assessed By:	Liam Mason (STF	(0033679)	Building Type:	Semi-detached House
Dwelling Details:	DESIGN STAGE		Total Floor Area: 7	2 Fm ²
Site Reference :	Bell Road, Bottish	am	Plot Reference:	Plot 8
			FIOL NEICHCE.	
Address :	Plot 8			
Client Details:				
Name:				
Address :				
-		vithin the SAP calculations. tions compliance.		
1a TER and DEF	2			
	ing system: Mains g	jas		
Fuel factor: 1.00 (i	• ,			
-	xide Emission Rate	. ,	18.81 kg/m ²	OK
1b TFEE and DF	Dioxide Emission Ra	ate (DER)	8.34 kg/m ²	OK
	rgy Efficiency (TFEI	Ε)	50.2 kWh/m²	
•	nergy Efficiency (DF	,	45.4 kWh/m ²	
-				OK
2 Fabric U-value				
Element		Average	Highest	
Element External	wall	0.19 (max. 0.30)	Highest 0.19 (max. 0.70)	OK
Element External Party wa	wall	0.19 (max. 0.30) 0.00 (max. 0.20)	0.19 (max. 0.70) -	OK
Element External Party wa Floor	wall	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25)	0.19 (max. 0.70) - 0.11 (max. 0.70)	OK OK
Element External Party wa Floor Roof	wall II	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35)	OK OK OK
Element External Party wa Floor Roof Openings	wall II	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25)	0.19 (max. 0.70) - 0.11 (max. 0.70)	OK OK
Element External Party wa Floor Roof Openings 2a Thermal brid	wall II S ging	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30)	OK OK OK
Element External Party wa Floor Roof Openings 2a Thermal brid	wall II S ging bridging calculated f	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30)	OK OK OK
Element External Party wa Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permea	wall II S ging bridging calculated f	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30)	ОК ОК ОК ОК
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili	wall II S ging bridging calculated t	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction	ОК ОК ОК ОК
Element External Party wa Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permea	wall I ging bridging calculated t ty bility at 50 pascals	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu	OK OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0	OK OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan Database: (rev 508, product Boiler systems with radiator	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0	Je) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan Database: (rev 508, product Boiler systems with radiator Brand name: Vaillant	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0	ue) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan Database: (rev 508, produc Boiler systems with radiator Brand name: Vaillant Model: ecoTEC plus 824	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0 t index 016841): rs or underfloor heating - ma	ue) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan Database: (rev 508, product Boiler systems with radiator Brand name: Vaillant Model: ecoTEC plus 824 Model qualifier: VUW GB 2-	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0 t index 016841): rs or underfloor heating - ma	ue) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan boiler systems with radiator Brand name: Vaillant Model: ecoTEC plus 824 Model qualifier: VUW GB 2- (Combi)	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0 t index 016841): rs or underfloor heating - ma 46/5-5	ue) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan Database: (rev 508, product Boiler systems with radiator Brand name: Vaillant Model: ecoTEC plus 824 Model qualifier: VUW GB 2-	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0 t index 016841): rs or underfloor heating - ma 46/5-5	ue) OK OK OK
Element External Party wal Floor Roof Openings 2a Thermal brid Thermal 3 Air permeabili Air permeal Maximum	wall II S ging bridging calculated f ty bility at 50 pascals ency	0.19 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25) 0.11 (max. 0.20) 1.36 (max. 2.00) from linear thermal transmittan boiler systems with radiator Brand name: Vaillant Model: ecoTEC plus 824 Model qualifier: VUW GB 2- (Combi) Efficiency 89.1 % SEDBUK	0.19 (max. 0.70) - 0.11 (max. 0.70) 0.11 (max. 0.35) 1.40 (max. 3.30) ces for each junction 5.00 (design valu 10.0 t index 016841): rs or underfloor heating - ma 46/5-5	ue) Nok ains gas

Regulations Compliance Report

Hot water Storage:	No cylinder							
ontrols	·							
Space heating controls	TTZC by plumbing and ele	ectrical services	Oł					
Hot water controls:								
	No cylinder							
Boiler interlock:	Yes		Oł					
ow energy lights	<i>0</i>							
Percentage of fixed lights with lo	ow-energy fittings	100.0%						
Minimum		75.0%	Oł					
lechanical ventilation								
Not applicable								
ummertime temperature								
Overheating risk (East Anglia):		Slight	Oł					
ed on:								
Overshading:		Average or unknown						
Windows facing: South		1.17m ²						
Windows facing: South		1.12m ²						
Windows facing: West		0.39m ²						
Windows facing: North		2.98m ²						
Windows facing: West		0.39m ²						
Windows facing: North		1.14m² 1.25m²						
Windows facing: North								
Ventilation rate:		4.00 Dark-coloured curtain or ro	llor blind					
Blinds/curtains:								
		Closed 100% of daylight he	Juis					

Roofs U-value Party Walls U-value Floors U-value Photovoltaic array 0.11 W/m²K 0 W/m²K 0.11 W/m²K

Plot 8


Dwelling type: Date of assessment: Produced by: Total floor area: Semi-detached House 03 November 2022 Liam Mason 72.5 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details:	Plot 8					
Address:		Plot 8				
Located in:		England				
Region:		East Anglia				
UPRN:		02 November 2002				
Date of assess		03 November 2022 29 November 2022				
Date of certific						
Assessment ty Transaction ty	-	New dwelling design stage New dwelling				
Tenure type:	pe.	Unknown				
Related party of	disclosure	No related party				
Thermal Mass		Indicative Value Low				
	125 litres/person/da					
PCDF Version:		508				
Property descript	ion:					
Dwelling type:		House				
Detachment:		Semi-detached				
Year Completed:		2022				
Floor Location:		Floor area:				
			S	torey height	:	
Floor 0		36.25 m ²		2.4 m		
Floor 1		36.25 m ²		2.4 m		
Living area:		12.61 m ² (fraction 0.174)				
Front of dwelling	faces:	South				
Opening types:						
Nome	Courses	Turner	Glazing:		Argon	Frame:
Name:	Source:	Туре:	Glazing.		Argon:	Flame.
Name: D_1	Manufacturer	Solid	Glazing.		Argon.	rianie.
D_1 W_1			low-E, En = 0	0.05, soft coat	Yes	Frame.
D_1 W_1 W_2	Manufacturer Manufacturer Manufacturer	Solid Windows Windows	low-E, En = (low-E, En = (0.05, soft coat	Yes Yes	FI dille.
D_1 W_1 W_2 W_3	Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows	low-E, En = 0 low-E, En = 0 low-E, En = 0	0.05, soft coat 0.05, soft coat	Yes Yes Yes	FI dille.
D_1 W_1 W_2 W_3 W_4	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows	low-E, En = 0 low-E, En = 0 low-E, En = 0 low-E, En = 0	0.05, soft coat 0.05, soft coat 0.05, soft coat	Yes Yes Yes Yes	FI dille.
D_1 W_1 W_2 W_3 W_4 W_5	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows	low-E, En = 0 low-E, En = 0 low-E, En = 0 low-E, En = 0 low-E, En = 0	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat	Yes Yes Yes Yes Yes	FI dine.
D_1 W_1 W_2 W_3 W_4 W_5 W_6	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows	low-E, En = 0 low-E, En = 0	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat	Yes Yes Yes Yes Yes Yes	FI dille.
D_1 W_1 W_2 W_3 W_4 W_5	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows	low-E, En = 0 low-E, En = 0	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat	Yes Yes Yes Yes Yes	гташе.
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name:	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Windows	low-E, En = 0 low-E, En = 0 g-value:	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat	Yes Yes Yes Yes Yes Yes Yes	No. of Openings:
D_1 W_1 W_2 W_3 W_4 W_5 W_5 W_6 W_7 Name: D_1	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0	low-E, En = 0 low-E, En = 0 g-value: 0	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat U-value: 1.2	Yes Yes Yes Yes Yes Yes Yes Yes	No. of Openings: 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Gap: mm 16mm or more	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat U-value: 1.2 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17	No. of Openings: 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat U-value: 1.2 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12	No. of Openings: 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Gap: mm 16mm or more 16mm or more	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat U-value: 1.2 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39	No. of Openings: 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4	Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Manufacturer Gap: mm 16mm or more 16mm or more 16mm or more	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98	No. of Openings: 1 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_1 W_2 W_3 W_4 W_5	Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39	No. of Openings: 1 1 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6	Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14	No. of Openings: 1 1 1 1 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5	Manufacturer Manufacturer	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39	No. of Openings: 1 1 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name:	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width:	No. of Openings: 1 1 1 1 1 1 1 1 1 1 Height:
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1	Manufacturer 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more 16mm or more	Solid Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_1	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name: D_1 W_7	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17 1.83 1.17	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17 1.12 0.39	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17 1.12 0.39 2.98	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17 1.12 0.39 2.98 0.39 2.98 0.39	No. of Openings: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_1 W_2 W_3 W_4 W_5 W_6 W_7 Name: D_1 W_5 W_6 W_7	Manufacturer Manuf	Solid Windows Windows Windows Windows Windows Windows Windows Frame Factor: 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	low-E, En = 0 low-E, En = 0 g-value: 0 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.	0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 0.05, soft coat 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yes Yes Yes Yes Yes Yes Yes Area: 1.83 1.17 1.12 0.39 2.98 0.39 1.14 1.25 Width: 1.83 1.17 1.12 0.39 2.98	No. of Openings: 1 1 1 1 1 1 1 1 1 Height: 1 1 1 1 1

SAP Input

Overshading:		Average	e or unknown				
Opaque Elements	s:						
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Element							
Wall 1	84.02	10.27	73.75	0.19	0	False	N/A
Roof 1	36.25	0	36.25	0.11	0		N/A
Floor 1	36.25			0.11			N/A
Internal Element	S						
INT FLOOR	36.25						N/A
Party Elements							
Party Wall	39.42						N/A

Thermal bridges:				
Thermal bridges:	User-define	d (individual P	SI-values)	Y-Value = 0.0885
	Length	Psi-value		
	17.06	0.16	E5	Ground floor (normal)
	17.06	0.07	E6	Intermediate floor within a dwelling
	9.85	0.09	E16	Corner (normal)
	8	0.3	E2	Other lintels (including other steel lintels)
	7.07	0.04	E3	Sill
	17.4	0.05	E4	Jamb
	9.06	0.06	E10	Eaves (insulation at ceiling level)
	11.29	0.24	E12	Gable (insulation at ceiling level)
	9.85	0.06	E18	Party wall between dwellings
	0	0.3	E2	
	0	0.04	E3	
	0	0.05	E4	
	0	0.16	E5	
	0	0.07	E6	
	0	0.06	E10	
	0	0.24	E12	
	0	0.09	E16	
	0	-0.09	E17	
	0	0.06	E18	
	8	0.16	P1	Ground floor
	8	0	P2	Intermediate floor within a dwelling
	0	0.16	P1	-
	0	0	P2	
	4.53	0.08	R4	Ridge (vaulted ceiling)
	0	0.08	R4	
	-		-	
Ventilation:				
Pressure test:	Yes (As des	signed)		
Ventilation:		itilation (extrac	ct fans)	
Number of chimneys:	0	•		
Number of open flues:	0			
Number of fans:	2			

Pressure test:	
Main heating system:	

Number of passive stacks: Number of sides sheltered:

Main heating system:

Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Boiler Database

2 0

2

5

SAP Input

	Database: (rev 508, product index 016841) Efficiency: Winter 87.0 % Summer: 90.0 Brand name: Vaillant Model: ecoTEC plus 824 Model qualifier: VUW GB 246/5-5 (Combi boiler) Systems with radiators Central heating pump : 2013 or later Design flow temperature: Design flow temperature<=45°C Unknown Boiler interlock: Yes Delayed start
Main heating Control:	
Main heating Control:	Time and temperature zone control by suitable arrangement of plumbing and electrical services Control code: 2110
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics:	Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No <u>Photovoltaic 1</u> Installed Peak power: 1.5 Tilt of collector: 45° Overshading: None or very little Collector Orientation: South
Assess Zero Carbon Home:	No

					User [Details:						
Assessor Name: Software Name:		m Masc oma FS				Strom Softwa	are Vei				033679 n: 1.0.5.58	
A	Diet	•		Р	roperty	Address	: Plot 8					
Address :	Plot											
1. Overall dwelling dim	ension	5.			A ***	o (m²)			iaht(m)		Velume(m3)	
Ground floor					-	a(m²) 36.25	(1a) x	Av. Hei	2.4	(2a) =	Volume(m³) 87	(3a)
First floor						36.25	(10) x		2.4	(2b) =	87](3b)
Total floor area TFA = (1a)+(1b	o)+(1c)+((1d)+(1e)+(1n		72.5	(4)]`´]`´
Dwelling volume)+(3c)+(3d	l)+(3e)+	.(3n) =	174	(5)
2. Ventilation rate:												-1
		main neating		econdar eating	у	other		total			m ³ per hour	
Number of chimneys		0] + [0] + [0] = [0	X 4	40 =	0	(6a)
Number of open flues		0	+	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent f	ans							2	x ^	10 =	20	(7a)
Number of passive vent	S							0	x ′	10 =	0	(7b)
Number of flueless gas	fires							0	x 4	40 =	0	(7c)
										Air ch	anges per hou	ır
Infiltration due to chimne	eys, flue	es and fa	ans = (6	a)+(6b)+(7	a)+(7b)+	(7c) =	Г	20	<u> </u>	÷ (5) =	0.11	(8)
If a pressurisation test has	been car	rried out or	is intende	ed, proceed	d to (17),	otherwise o	continue fr	om (9) to ((16)	I		1
Number of storeys in	the dwe	elling (ns	s)								0	(9)
Additional infiltration									[(9)-	-1]x0.1 =	0	(10)
Structural infiltration:	0.25 for	r steel or	timber f	frame or	0.35 fo	r masoni		0	(11)			
if both types of wall are deducting areas of oper				ponding to	the grea	ter wall are	a (after					
If suspended wooden	floor, e	enter 0.2	(unseal	ed) or 0.	1 (seal	ed), else	enter 0				0	(12)
If no draught lobby, e	nter 0.0)5, else e	enter 0								0	(13)
Percentage of window	vs and	doors dr	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value	•	•			•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeab	-										0.36	(18)
Air permeability value appl		ressurisatio	on test has	s been don	e or a de	gree air pe	rmeability	is being us	sed			-
Number of sides shelter Shelter factor	ed					(20) = 1 -	[0 075 x (1	9)1 -			2	(19)
	oting ob	altar foo	tor			(20) = 1 (21) = (18)		[0]] =			0.85	(20)
Infiltration rate incorpora Infiltration rate modified	-					(21) = (10	, ^ (20) =				0.31	(21)
Jan Feb	Mar	Apr	May		Jul	Aug	Son	Oct	Nov	Dec		
				Jun	Jui	l Aug	Sep			Dec		
Monthly average wind s	·				0.0	07	4	4.0	4.5	4 7		
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	2a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjuste	ed infiltra	ation rat	e (allow	ing for sl	nelter ar	nd wind s	speed) :	= (21a) x	(22a)m					
	0.4	0.39	0.38	0.34	0.33	0.29	0.29	0.29	0.31	0.33	0.35	0.36		
	ate effec echanica		-	rate for t	he appl	cable ca	se							(23a)
				endix N. (2	3b) = (23	a) x Fmv (e	equation	(N5)) , othe	rwise (23h	(23a) = (23a)			0	(23a)
								m Table 4h		(200)			0	(230)
			-	-	-			/HR) (24a		2b)m + (23b) × [′	1 – (23c)	_	(200)
, (24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mech	anical ve	entilation	without	heat red	covery ((MV) (24k)m = (2	2b)m + (23b)		3	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
,								ion from (4c) = (22		.5 × (23b)	-	-	
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
								ion from 0.5 + [(2		0.5]			•	
(24d)m=	0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57]	(24d)
Effec	ctive air	change	rate - ei	nter (24a) or (24	o) or (24	c) or (2	4d) in bo	x (25)		•		-	
(25)m=	0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57]	(25)
3. Hea	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gros area		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-value kJ/m²⊷		A X k kJ/K
Doors						1.83	x	1.2	=	2.196				(26)
Window	ws Type	1				1.17	x	1/[1/(1.4)+	0.04] =	1.55				(27)
Window	ws Type	2				1.12	x	1/[1/(1.4)+	0.04] =	1.48				(27)
Window	ws Type	3				0.39	x	1/[1/(1.4)+	0.04] =	0.52				(27)
Window	ws Type	4				2.98	x	1/[1/(1.4)+	0.04] =	3.95				(27)
Window	ws Type	5				0.39	x	1/[1/(1.4)+	0.04] =	0.52				(27)
Window	ws Type	6				1.14	x	1/[1/(1.4)+	0.04] =	1.51				(27)
Window	ws Type	7				1.25	x	1/[1/(1.4)+	0.04] =	1.66				(27)
Floor						36.25	5 X	0.11	=	3.9875				(28)
Walls		84.0	02	10.2	7	73.75	5 X	0.19	=	14.01				(29)
Roof		36.2	25	0		36.25	5 X	0.11	=	3.99				(30)
Total a	rea of e	lements	s, m²			156.5	2							(31)
Party v	vall					39.42	<u>2</u> X	0	=	0				(32)
Interna	l floor					36.25	5							(32d)
				effective wi nternal wal			lated usin	ng formula 1	1/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	h 3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =				35.3	37 (33)
Heat ca	apacity	Cm = S	(A x k)						((28).	(30) + (32	2) + (32a).	(32e) =	16817	.15 <mark>(34)</mark>
Therma	al mass	parame	eter (TMI	P = Cm -	- TFA) ii	ר kJ/m²K			Indica	tive Value	: Low		100) (35)
For desig	gn assess	ments wh	nere the de	etails of the	construct	ion are no	t known p	precisely the	e indicative	e values of	TMP in Ta	able 1f		

Stroma FSAP 2012 Version: 1.0.5.58 (SAP 9.92) - http://www.stroma.com

can be i	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						13.85	(36)
if details	s of therma	al bridging	are not kr	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			49.22	(37)
Ventila	ation hea	at loss ca	alculated	monthl	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	33.2	33.03	32.86	32.05	31.9	31.2	31.2	31.07	31.47	31.9	32.21	32.52		(38)
Heat t	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	82.42	82.25	82.08	81.28	81.13	80.43	80.43	80.3	80.7	81.13	81.43	81.75		
									,	Average =	Sum(39)1	12 /12=	81.27	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.14	1.13	1.13	1.12	1.12	1.11	1.11	1.11	1.11	1.12	1.12	1.13		_
Numb	er of day	/s in moi	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 /12=	1.12	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		1	1	1			1			Į	Į	1	1	
1 \\/	otor hoo	ting enei	rav roqu	iromont:								kWh/ye	aar:	
- 1 . vvc	ater nea	ing ener	igy iequ	nement.								K V V I / Y V	-ai.	
		ipancy, l		•.		· · · · · · · · · · · · · · · · · · ·			- <i></i>			31		(42)
	A > 13. A £ 13.		+ 1.76 x	[1 - exp	(-0.0003	49 x (TF	-A -13.9)2)] + 0.0)013 x (TFA -13.	.9)			
			ater usad	ae in litre	es per da	v Vd.av	erage =	(25 x N)	+ 36		88	.95		(43)
Reduce	the annua	al average	hot water	usage by	5% if the a	welling is	designed t	to achieve		se target o			l	
not mor	e that 125	litres per p	person pe	r day (all w	ater use, l	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)		-	-			
(44)m=	97.84	94.29	90.73	87.17	83.61	80.05	80.05	83.61	87.17	90.73	94.29	97.84		_
Francis	contont of	botwater	used as	a data d m	anthly 1	100 v Vd v		Tm / 2600			m(44) ₁₁₂ =		1067.4	(44)
		1	1	1		-	1	0Tm / 3600		T			1	
(45)m=	145.1	126.91	130.96	114.17	109.55	94.53	87.6	100.52	101.72	118.55	129.4	140.52		-
lf instan	taneous v	vater heatii	na at noini	of use (no	hot water	storage)	enter () in	boxes (46)		Total = Su	m(45) ₁₁₂ =	=	1399.53	(45)
			· ·	· ·						47.70	10.44	21.09	1	(46)
(46)m= Water	21.77 storage	19.04 loss:	19.64	17.13	16.43	14.18	13.14	15.08	15.26	17.78	19.41	21.08		(40)
	-		includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
-		neating a					-					-	1	
		-			-			mbi boile	ers) ente	ər '0' in (47)			
Water	storage	loss:												
a) If n	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
-		m water	-	-				(48) x (49)	=			0		(50)
,		urer's de		•									1	
		age loss			e 2 (KW	n/litre/da	ay)					0		(51)
	•	eating s from Ta		011 4.3								0	1	(52)
		actor fro		2b								0		(52)
•													1	

-	y lost fro (50) or (U U	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54) (55)
	r storage	. , .		for each	month			((56)m = (55) × (41)ı	m		0		(00)
(56)m=		0	0	0	0	0	0	0	0	0	0	0		(56)
	der contains	-	-	-	-	-	-	-	-	-		-	ix H	(00)
(57)m=		0	0	0	0	0	0	0	0	0	0	0		(57)
					-	0	0	0	0	0				
	ry circuit	•	,			(FO)		NE (44)				0		(58)
	ry circuit						. ,	• • •		r thermo	stat)			
(59)m=	· · · ·										0	0		(59)
											-			, ,
	i loss ca			r	, 	r í			04.04	05 70	04.04	05.0		(61)
(61)m=		23.29	25.75	24.87	25.67	24.8	25.6	25.64	24.84	25.72	24.94	25.8		(61)
	· · · ·			<u> </u>		r		<u> </u>		, 	<u> </u>		(59)m + (61)m	(00)
(62)m=		150.2	156.7	139.04	135.22	119.33	113.2	126.17	126.56	144.26	154.34	166.33		(62)
	HW input o									r contribut	ion to wate	er heating)		
`	additiona	· · · · · ·		r	· · · · · ·	r	· · ·	i	ŕ					(62)
(63)m=		0	0	0	0	0	0	0	0	0	0	0		(63)
•	ut from w	r		1		1								
(64)m=	170.92	150.2	156.7	139.04	135.22	119.33	113.2	126.17	126.56	144.26	154.34	166.33		1 /2 ()
									out from wa				1702.27	(64)
Heat	gains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 ×	« [(46)m	+ (57)m	+ (59)m]	
(65)m=	54.7	48.02	49.98	44.18	42.84	37.63	35.53	39.83	40.03	45.85	49.26	53.17		(65)
incl	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Ir	nternal ga	ains (see	Table 5	5 and 5a):									
Metal	o <mark>olic gain</mark>	is (Table	5), Wat	ts	_	-	-	-		-	-	-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	138.32	138.32	138.32	138.32	138.32	138.32	138.32	138.32	138.32	138.32	138.32	138.32		(66)
Lighti	ng gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	50.57	44.92	36.53	27.66	20.67	17.45	18.86	24.51	32.9	41.78	48.76	51.98		(67)
Applia	ances ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	•			
(68)m=	303.07	306.22	298.29	281.42	260.13	240.11	226.74	223.59	231.52	248.39	269.69	289.7		(68)
Cook	ing gains	(calcula	ted in A	, ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m=	<u> </u>	51.14	51.14	51.14	51.14	51.14	51.14	51.14	51.14	51.14	51.14	51.14		(69)
Pumr	s and fai	ns aains	(Table (5a)										
(70)m=		3	3	3	3	3	3	3	3	3	3	3		(70)
Losse	es e.g. ev	u vaporatio	n (nega	ı tive valu	ı es) (Tab	ule 5)	1			1		1		
(71)m=		-92.21	-92.21	-92.21	-92.21	-92.21	-92.21	-92.21	-92.21	-92.21	-92.21	-92.21		(71)
					L	L								1.1
	r heating	dains (T	able 5)											
(72)m=	r heating	<u> </u>	,	61.36	57.58	52.27	47.75	53.54	55.6	61.62	68.42	71.47		(72)
(72)m= Total	73.52	71.46	67.18	61.36	57.58	52.27	47.75 m + (67)m	53.54	55.6	61.62	68.42 1)m + (72)	71.47		(72)
	73.52	71.46	67.18	61.36 470.68	57.58				55.6 + (69)m + (420.26					(72)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Facto Table 6d	or	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North 0.9	0.77 x	×	2.98	×	10.63	×	0.63	x	0.7	=	9.68	(74)
North 0.9	0.77 x	x	1.14	x	10.63	x	0.63	x	0.7	=	3.7	(74)
North 0.9	0.77 X	x	1.25	x	10.63	×	0.63	x	0.7	=	4.06	(74)
North 0.9	0.77 x	x	2.98	x	20.32	×	0.63	x	0.7	=	18.51	(74)
North 0.9	x 0.77	x	1.14	x	20.32	x	0.63	x	0.7	=	7.08	(74)
North 0.9	0.77 0.77	x	1.25	×	20.32	×	0.63	x	0.7	=	7.76	(74)
North 0.9	0.77 0.77	x	2.98	×	34.53	×	0.63	x	0.7	=	31.45	(74)
North 0.9	0.77	x	1.14	x	34.53	×	0.63	x	0.7	=	12.03	(74)
North 0.9	0.77	x	1.25	×	34.53	×	0.63	x	0.7	=	13.19	(74)
North 0.9	0.77	x	2.98	x	55.46	×	0.63	x	0.7	=	50.51	(74)
North 0.9	0.77	x	1.14	×	55.46	×	0.63	x	0.7	=	19.32	(74)
North 0.9	0.77	x	1.25	x	55.46	×	0.63	x	0.7	=	21.19	(74)
North 0.9	0.77	x	2.98	x	74.72	×	0.63	x	0.7	=	68.05	(74)
North 0.9	0.77	x	1.14	x	74.72	x	0.63	x	0.7	=	26.03	(74)
North 0.9	0.77	x	1.25	×	74.72	×	0.63	x	0.7	=	28.54	(74)
North 0.9	0.77	x	2.98	x	79.99	x	0.63	x	0.7	=	72.84	(74)
North 0.9	0.77	x	1.14	x	79.99	×	0.63	x	0.7	=	27.87	(74)
North 0.9	0.77	x	1.25	×	79.99	×	0.63	x	0.7	=	30.56	(74)
North 0.9	0.77	x	2.98	x	74.68	x	0.63	x	0.7	=	68.01	(74)
North 0.9	0.77 0.77	x	1.14	x	74.68	×	0.63	x	0.7	=	26.02	(74)
North 0.9	0.77	x	1.25	x	74.68	×	0.63	x	0.7	=	28.53	(74)
North 0.9	0.77	x	2.98	×	59.25	×	0.63	x	0.7	=	53.96	(74)
North 0.9	0.77	x	1.14	x	59.25	×	0.63	x	0.7	=	20.64	(74)
North 0.9	0.77	x	1.25	x	59.25	×	0.63	x	0.7	=	22.63	(74)
North 0.9	0.77	x	2.98	×	41.52	×	0.63	x	0.7	=	37.81	(74)
North 0.9	0.77	x	1.14	×	41.52	×	0.63	x	0.7	=	14.46	(74)
North 0.9	0.77	x	1.25	×	41.52	×	0.63	x	0.7	=	15.86	(74)
North 0.9	0.77	x	2.98	x	24.19	x	0.63	x	0.7	=	22.03	(74)
North 0.9	0.77	x	1.14	×	24.19	x	0.63	x	0.7	=	8.43	(74)
North 0.9	0.77	x	1.25	x	24.19	x	0.63	x	0.7	=	9.24	(74)
North 0.9	0.77	x	2.98	×	13.12	×	0.63	x	0.7	=	11.95	(74)
North 0.9	0.77	x	1.14	×	13.12	×	0.63	x	0.7	=	4.57	(74)
North 0.9	0.77	x	1.25	x	13.12	×	0.63	x	0.7	=	5.01	(74)
North 0.9	0.77	x	2.98	×	8.86	×	0.63	x	0.7	=	8.07	(74)
North 0.9	0.77	×	1.14	×	8.86	×	0.63	x	0.7	=	3.09	(74)
North 0.9	_	×	1.25	×	8.86	×	0.63	x	0.7	=	3.39	(74)
South 0.9	0.77	×	1.17	×	46.75	×	0.63	x	0.7	=	16.72	(78)
South 0.9		×	1.12	×	46.75	×	0.63	x	0.7	=	16	(78)
South 0.9	0.77	×	1.17	×	76.57	×	0.63	x	0.7	=	27.38	(78)

South 0.98 0.77 × 1.12 × 7.657 × 0.83 × 0.77 = 28.21 (78) South 0.96 0.77 × 1.112 × 9753 × 0.633 × 0.77 = 33.33 (78) South 0.96 0.77 × 1.12 × 11023 × 0.663 × 0.77 = 33.32 (78) South 0.96 0.77 × 1.112 × 114.87 × 0.633 × 0.77 = 347.3 (78) South 0.96 0.77 × 1.17 × 110660 × 0.633 × 0.77 = 38.62 (78) South 0.96 0.77 × 1.117 × 10680 × 0.633 × 0.77 = 38.62 (78) South 0.96 0.77 × 1.117 ×	0	г		1				1		I				-
Date Date <th< td=""><td>South</td><td>0.9x</td><td>0.77</td><td>×</td><td>1.12</td><td>x</td><td>76.57</td><td>×</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>26.21</td><td>(78)</td></th<>	South	0.9x	0.77	×	1.12	x	76.57	×	0.63	x	0.7	=	26.21	(78)
South 0.87 X 1.17 X 10.02 X 0.63 X 0.77 = 39.42 (78) South 0.97 X 1.17 X 110.23 X 0.63 X 0.77 = 39.42 (78) South 0.97 X 1.17 X 114.87 X 0.63 X 0.77 = 39.42 (78) South 0.97 X 1.17 X 110.55 X 0.63 X 0.77 = 39.53 (78) South 0.9 0.77 X 1.17 X 106.61 X 0.63 X 0.77 = 39.597 (78) South 0.9 0.77 X 1.17 X 104.88 0.63 X 0.77 = 37.51 (78) South 0.9 0.77 X 1.17 X 104.88 0.63 X 0.77 = 39.5	South	0.9x	0.77	x	1.17	x	97.53	x	0.63	x	0.7	=	34.87	(78)
South 0.02 0.77 × 1.12 × 10023 × 0.63 × 0.77 = 17.73 (7) South 0.87 0.77 × 1.17 × 114.87 × 0.633 × 0.77 = 141.07 (7) South 0.87 0.77 × 1.12 × 110.55 × 0.633 × 0.77 = 39.32 (7) South 0.87 0.77 × 1.17 × 108.01 × 0.633 × 0.77 = 37.84 (7) South 0.87 0.77 × 1.17 × 108.01 × 0.633 × 0.77 = 37.51 (7) South 0.87 0.77 × 1.17 × 104.89 0.633 × 0.77 = 36.43 (7) = 36.43 (7) = 36.43 (7) 36.43 (7)	South	0.9x	0.77	x	1.12	x	97.53	x	0.63	x	0.7	=	33.38	(78)
South Out Out </td <td>South</td> <td>0.9x</td> <td>0.77</td> <td>x</td> <td>1.17</td> <td>x</td> <td>110.23</td> <td>X</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>39.42</td> <td>(78)</td>	South	0.9x	0.77	x	1.17	x	110.23	X	0.63	x	0.7	=	39.42	(78)
South 0.3 0.77 × 1.12 × 11447 × 0.03 × 0.77 × 1.17 × 11055 × 0.63 × 0.77 = 39.32 (78) South 0.9 0.77 × 1.12 × 110.55 × 0.63 × 0.77 = 39.32 (78) South 0.9 0.77 × 1.12 × 100.01 × 0.63 × 0.77 = 39.32 (78) South 0.9 0.77 × 1.17 × 104.89 × 0.63 × 0.77 = 35.9 (78) South 0.9 0.77 × 1.17 × 101.89 × 0.63 × 0.77 = 34.87 (78) South 0.9 0.77 × 1.17 × 35.42 × 0.63 × 0.77 = 28.27 (78)	South	0.9x	0.77	x	1.12	x	110.23	×	0.63	x	0.7	=	37.73	(78)
South 0.9x 0.77 × 1.12 × 1.10.55 × 0.63 × 0.77 = 3.9.53 (78) South 0.9x 0.77 × 1.12 × 110.55 × 0.63 × 0.77 = 3.8.62 (78) South 0.9x 0.77 × 1.12 × 106.01 × 0.63 × 0.77 = 3.8.62 (78) South 0.9x 0.77 × 1.12 × 104.89 × 0.63 × 0.77 = 3.5.9 (78) South 0.9x 0.77 × 1.12 × 101.89 × 0.63 × 0.77 = 3.4.67 (78) South 0.9x 0.77 × 1.12 × 82.59 × 0.63 × 0.77 = 2.8.27 (78) South 0.9x 0.77 × 1.12 ×	South	0.9x	0.77	x	1.17	x	114.87	×	0.63	x	0.7	=	41.07	(78)
South O.S. O.T. VIII VIIII VIIIII VIIIII VIIIII VIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	South	0.9x	0.77	x	1.12	x	114.87	x	0.63	x	0.7	=	39.32	(78)
South 0.00 </td <td>South</td> <td>0.9x</td> <td>0.77</td> <td>x</td> <td>1.17</td> <td>x</td> <td>110.55</td> <td>x</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>39.53</td> <td>(78)</td>	South	0.9x	0.77	x	1.17	x	110.55	x	0.63	x	0.7	=	39.53	(78)
South 0.9 0.77 x 1.12 x 108.01 x 0.63 x 0.77 = 33.67 (7) South 0.9 0.77 x 1.17 x 104.89 x 0.63 x 0.77 = 33.59 (7) South 0.9 0.77 x 1.12 x 104.89 x 0.63 x 0.77 = 33.643 (78) South 0.9 0.77 x 1.12 x 101.89 x 0.63 x 0.77 = 34.87 (78) South 0.9 0.77 x 1.12 x 82.59 x 0.63 x 0.77 = 28.77 (78) South 0.9 0.77 x 1.17 x 55.42 x 0.63 x 0.77 = 18.87 (78) South 0.9 0.77 x 1.17 x 54.24	South	0.9x	0.77	×	1.12	x	110.55	×	0.63	x	0.7	=	37.84	(78)
South 0.7.1 x 1.1.7 x 10000 x 0.7.7 south 0.8.7 0.7.7 x 1.1.7 x 104.89 x 0.63 x 0.7.7 south 0.9.8 0.7.7 x 1.1.2 x 104.89 x 0.63 x 0.7.7 south 0.9.8 0.7.7 x 1.1.7 x 101.89 x 0.63 x 0.7.7 south 0.9.8 0.7.7 x 1.1.7 x 28.59 x 0.63 x 0.7.7 z 28.63 7.7 South 0.9.8 0.77 x 1.1.7 x 82.59 x 0.63 x 0.7.7 = 28.27 7.78 South 0.9.8 0.77 x 1.1.17 x 26.542 x 0.63 x 0.7.7 = 28.277 7.78 South 0.9.8 0.77 x 1.12 x 40.4 x 0.63	South	0.9x	0.77	x	1.17	x	108.01	×	0.63	x	0.7	=	38.62	(78)
South 0.9 0.77 x 1.12 x 104.89 x 0.03 x 0.77 s 1.17 x 101.89 x 0.63 x 0.77 a 1.17 x 101.89 x 0.63 x 0.77 a 36.43 (78) South 0.9 0.77 x 1.17 x 82.59 x 0.63 x 0.77 a 34.87 (78) South 0.9 0.77 x 1.17 x 82.59 x 0.63 x 0.77 a 1.12 x 56.42 x 0.63 x 0.77 a 1.897 (78) South 0.9 0.77 x 1.12 x 56.42 x 0.63 x 0.77 a 1.897 (78) South 0.9 0.77 x 1.12 x 40.4 x 0.63 x 0.77 a 1.38.37(8)	South	0.9x	0.77	x	1.12	x	108.01	x	0.63	x	0.7	=	36.97	(78)
South 0.9x 0.77 x 1.17 x 101.89 x 0.02 x 0.77 = 0.66.43 r(7) South 0.9x 0.77 x 1.12 x 101.89 x 0.63 x 0.77 = 24.67 (78) South 0.9x 0.77 x 1.12 x 82.59 x 0.63 x 0.77 = 29.53 (78) South 0.9x 0.77 x 1.12 x 82.59 x 0.63 x 0.77 = 29.53 (78) South 0.9x 0.77 x 1.12 x 55.42 x 0.63 x 0.77 = 18.97 (78) South 0.9x 0.77 x 1.12 x 40.4 0.63 x 0.77 = 18.87 (78) South 0.9x 0.77 x 0.39 x 19.64 <td< td=""><td>South</td><td>0.9x</td><td>0.77</td><td>x</td><td>1.17</td><td>x</td><td>104.89</td><td>x</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>37.51</td><td>(78)</td></td<>	South	0.9x	0.77	x	1.17	x	104.89	x	0.63	x	0.7	=	37.51	(78)
South 0.8x 0.77 x 1.12 x 101.89 x 0.63 x 0.77 = 34.87 (78) South 0.9x 0.77 x 1.12 x 82.59 x 0.63 x 0.77 = 34.87 (78) South 0.9x 0.77 x 1.12 x 82.59 x 0.63 x 0.77 = 29.53 (78) South 0.9x 0.77 x 1.17 x 56.42 x 0.63 x 0.77 = 118.97 (78) South 0.9x 0.77 x 1.12 x 40.4 x 0.63 x 0.77 = 14.45 (78) South 0.9x 0.77 x 1.12 x 40.4 x 0.63 x 0.77 = 13.83 (76) West 0.9x 0.77 x 0.39 x 38.42 </td <td>South</td> <td>0.9x</td> <td>0.77</td> <td>x</td> <td>1.12</td> <td>x</td> <td>104.89</td> <td>×</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>35.9</td> <td>(78)</td>	South	0.9x	0.77	x	1.12	x	104.89	×	0.63	x	0.7	=	35.9	(78)
South 0.11 1.12 20.00 0.63 x 0.7 = 29.53 78) South 0.5x 0.77 x 1.17 x 82.59 x 0.63 x 0.7 = 29.53 78) South 0.5x 0.77 x 1.117 x 65.42 x 0.63 x 0.7 = 29.53 78) South 0.5x 0.77 x 1.17 x 56.42 x 0.63 x 0.7 = 19.82 78) South 0.5x 0.77 x 1.17 x 40.4 x 0.63 x 0.7 = 13.83 77) South 0.5x 0.77 x 0.39 x 19.64 x 0.63 x 0.7 = 2.34 (60) West 0.5x 0.77 x 0.39 x 63.27 x 0.63 x 0.7	South	0.9x	0.77	x	1.17	x	101.89	x	0.63	x	0.7	=	36.43	(78)
South 0.1 1.12 x 82.5 0.63 x 0.7 = 28.27 78 South 0.5x 0.77 x 1.17 x 55.42 x 0.63 x 0.77 = 19.82 78 South 0.5x 0.77 x 1.17 x 55.42 x 0.63 x 0.77 = 19.82 78 South 0.5x 0.77 x 1.17 x 40.4 x 0.63 x 0.77 = 14.45 (78) South 0.5x 0.77 x 1.12 x 40.4 x 0.63 x 0.77 = 13.83 (78) West 0.5x 0.77 x 0.39 x 19.64 x 0.63 x 0.77 = 2.34 (80) West 0.5x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 7.54 (80) West 0.5x 0.77 x <t< td=""><td>South</td><td>0.9x</td><td>0.77</td><td>x</td><td>1.12</td><td>x</td><td>101.89</td><td>×</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>34.87</td><td>(78)</td></t<>	South	0.9x	0.77	x	1.12	x	101.89	×	0.63	x	0.7	=	34.87	(78)
South 0.37 x 1.12 x 0.63 x 0.7 z 1.17 x 55.42 x 0.63 x 0.7 = 19.82 (76) South $0.5x$ 0.77 x 1.12 x 55.42 x 0.63 x 0.7 = 11.87 (76) South $0.9x$ 0.77 x 1.12 x 40.4 x 0.63 x 0.7 = $11.4.5$ (76) South $0.9x$ 0.77 x 1.12 x 40.4 x 0.63 x 0.7 = $11.4.5$ (76) West $0.9x$ 0.77 x 0.39 x 19.64 x 0.63 x 0.7 $= 2.34 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.7 = 7.54 (80) West 0.9x 0.77 x 0.39 x$	South	0.9x	0.77	x	1.17	x	82.59	×	0.63	x	0.7	=	29.53	(78)
South0.17x1.11x55.42x0.63x0.7=1.897(78)South0.9x0.77x1.17x40.4x0.63x0.7=14.45(78)South0.9x0.77x1.17x40.4x0.63x0.7=14.45(78)West0.9x0.77x1.12x40.4x0.63x0.7=13.83(79)West0.9x0.77x0.39x19.64x0.63x0.7=2.34(80)West0.9x0.77x0.39x19.64x0.63x0.7=2.34(80)West0.9x0.77x0.39x38.42x0.63x0.7=4.58(80)West0.9x0.77x0.39x63.27x0.63x0.7=7.54(80)West0.9x0.77x0.39x63.27x0.63x0.7=11(80)West0.9x0.77x0.39x92.28x0.63x0.7=11(80)West0.9x0.77x0.39x113.09x0.63x0.7=13.48(80)West0.9x0.77x0.39x115.77x0.63 <td>South</td> <td>0.9x</td> <td>0.77</td> <td>x</td> <td>1.12</td> <td>x</td> <td>82.59</td> <td>×</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>28.27</td> <td>(78)</td>	South	0.9x	0.77	x	1.12	x	82.59	×	0.63	x	0.7	=	28.27	(78)
South 0.9x 0.77 x 1.17 x 40.4 x 0.63 x 0.77 = 11.45 (78) South 0.9x 0.77 x 1.12 x 40.4 x 0.63 x 0.77 = 11.83 (78) West 0.9x 0.77 x 1.12 x 40.4 x 0.63 x 0.77 = 11.83 (78) West 0.9x 0.77 x 0.39 x 19.64 x 0.63 x 0.77 = 2.34 (80) West 0.9x 0.77 x 0.39 x 38.42 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.77 = 11.60 West 0.9x <	South	0.9x	0.77	×	1.17	x	55.42	×	0.63	x	0.7	=	19.82	(78)
South 0.31 1.11 1.12	South	0.9x	0.77	×	1.12	x	55.42	×	0.63	x	0.7	=	18.97	(78)
West 0.9x 0.77 × 0.39 × 19.64 × 0.63 × 0.77 = 2.34 (80) West 0.9x 0.77 × 0.39 × 19.64 × 0.63 × 0.77 = 2.34 (80) West 0.9x 0.77 × 0.39 × 19.64 × 0.63 × 0.77 = 2.34 (80) West 0.9x 0.77 × 0.39 × 38.42 × 0.63 × 0.77 = 4.58 (80) West 0.9x 0.77 × 0.39 × 63.27 × 0.63 × 0.77 = 7.54 (80) West 0.9x 0.77 × 0.39 × 63.27 × 0.63 × 0.77 = 7.54 (80) West 0.9x 0.77 × 0.39 × 92.28 × 0.63 × 0.77 = 11.480 (80) West <t< td=""><td>South</td><td>0.9x</td><td>0.77</td><td>x</td><td>1.17</td><td>x</td><td>40.4</td><td>×</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>14.45</td><td>(78)</td></t<>	South	0.9x	0.77	x	1.17	x	40.4	×	0.63	x	0.7	=	14.45	(78)
West 0.9x 0.77 × 0.39 × 19.64 × 0.63 × 0.77 = 2.34 (80) West 0.9x 0.77 × 0.39 × 38.42 × 0.63 × 0.77 = 2.34 (80) West 0.9x 0.77 × 0.39 × 38.42 × 0.63 × 0.77 = 4.58 (80) West 0.9x 0.77 × 0.39 × 63.27 × 0.63 × 0.77 = 7.54 (80) West 0.9x 0.77 × 0.39 × 63.27 × 0.63 × 0.77 = 7.54 (80) West 0.9x 0.77 × 0.39 × 92.28 × 0.63 × 0.77 = 11 (80) West 0.9x 0.77 × 0.39 × 113.09 × 0.63 × 0.77 = 13.48 (80) West	South	0.9x	0.77	x	1.12	x	40.4	×	0.63	x	0.7	=	13.83	(78)
West 0.9x 0.77 x 0.39 x 38.42 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 38.42 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 7.54 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 7.54 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.77 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.77 = 13.48 (80) West	West	0.9x	0.77	x	0.39	x	19.64	×	0.63	x	0.7	=	2.34	(80)
West 0.9x 0.77 x 0.39 x 38.42 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 4.58 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 7.54 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.77 = 7.54 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.77 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.77 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.77 = 13.48 (80) West <t< td=""><td>West</td><td>0.9x</td><td>0.77</td><td>×</td><td>0.39</td><td>x</td><td>19.64</td><td>×</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>2.34</td><td>(80)</td></t<>	West	0.9x	0.77	×	0.39	x	19.64	×	0.63	x	0.7	=	2.34	(80)
West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.7 = 7.54 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.7 = 7.54 (80) West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.7 = 7.54 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.7 = 11 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.7 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.7 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x <td>West</td> <td>0.9x</td> <td>0.77</td> <td>×</td> <td>0.39</td> <td>x</td> <td>38.42</td> <td>×</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>4.58</td> <td>(80)</td>	West	0.9x	0.77	×	0.39	x	38.42	×	0.63	x	0.7	=	4.58	(80)
West 0.9x 0.77 x 0.39 x 63.27 x 0.63 x 0.7 = 7.54 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.7 = 11 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.7 = 11 (80) West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.7 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.7 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 13.14 (80) West 0.9x <td>West</td> <td>0.9x</td> <td>0.77</td> <td>×</td> <td>0.39</td> <td>x</td> <td>38.42</td> <td>×</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>4.58</td> <td>(80)</td>	West	0.9x	0.77	×	0.39	x	38.42	×	0.63	x	0.7	=	4.58	(80)
West $0.9x$ 0.77 x 0.39 x 92.28 x 0.63 x 0.7 $=$ 11 (80) West $0.9x$ 0.77 x 0.39 x 92.28 x 0.63 x 0.7 $=$ 11 (80) West $0.9x$ 0.77 x 0.39 x 92.28 x 0.63 x 0.7 $=$ 11 (80) West $0.9x$ 0.77 x 0.39 x 113.09 x 0.63 x 0.7 $=$ 13.48 (80) West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.48 (80) West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.8 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 13.14 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 $=$ 11.28 (80) Wes	West	0.9x	0.77	x	0.39	x	63.27	×	0.63	x	0.7	=	7.54	(80)
West 0.9x 0.77 x 0.39 x 92.28 x 0.63 x 0.77 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.77 = 11 (80) West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.77 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.77 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.77 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.77 = 13.8 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.77 = 13.14 (80) West	West	0.9x	0.77	×	0.39	×	63.27	×	0.63	x	0.7	=	7.54	(80)
West $0.9x$ 0.77 x 0.39 x 113.09 x 0.63 x 0.7 $=$ 13.48 (80) West $0.9x$ 0.77 x 0.39 x 113.09 x 0.63 x 0.7 $=$ 13.48 (80) West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.48 (80) West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.8 (80) West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.8 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 13.14 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) <trr< td=""><td>West</td><td>0.9x</td><td>0.77</td><td>x</td><td>0.39</td><td>x</td><td>92.28</td><td>×</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>11</td><td>(80)</td></trr<>	West	0.9x	0.77	x	0.39	x	92.28	×	0.63	x	0.7	=	11	(80)
West 0.9x 0.77 x 0.39 x 113.09 x 0.63 x 0.7 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.48 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 13.14 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 13.14 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.7 = 11.28 (80) West	West	0.9x	0.77	x	0.39	x	92.28	×	0.63	x	0.7	=	11	(80)
West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 115.77 x 0.63 x 0.7 = 13.8 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 13.14 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 13.14 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.7 = 11.28 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.7 = 11.28 (80) West <	West	0.9x	0.77	x	0.39	x	113.09	×	0.63	x	0.7	=	13.48	(80)
West $0.9x$ 0.77 x 0.39 x 115.77 x 0.63 x 0.7 $=$ 13.8 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 13.14 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 13.14 (80) West $0.9x$ 0.77 x 0.39 x 110.22 x 0.63 x 0.7 $=$ 13.14 (80) West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 $=$ 5.43 (80)	West	0.9x	0.77	x	0.39	x	113.09	×	0.63	x	0.7	=	13.48	(80)
West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.77 = 13.14 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.77 = 13.14 (80) West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.77 = 13.14 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.77 = 11.28 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.77 = 11.28 (80) West 0.9x 0.77 x 0.39 x 73.59 x 0.63 x 0.77 = 8.77 (80) West 0.9x 0.77 x 0.39 x 73.59 x 0.63 x 0.77 = 8.77 (80) West	West	0.9x	0.77	x	0.39	x	115.77	x	0.63	x	0.7	=	13.8	(80)
West 0.9x 0.77 x 0.39 x 110.22 x 0.63 x 0.77 = 13.14 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.77 = 11.28 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.77 = 11.28 (80) West 0.9x 0.77 x 0.39 x 94.68 x 0.63 x 0.77 = 11.28 (80) West 0.9x 0.77 x 0.39 x 73.59 x 0.63 x 0.77 = 8.77 (80) West 0.9x 0.77 x 0.39 x 73.59 x 0.63 x 0.77 = 8.77 (80) West 0.9x 0.77 x 0.39 x 73.59 x 0.63 x 0.77 = 8.77 (80) West	West	0.9x	0.77	×	0.39	x	115.77	×	0.63	x	0.7	=	13.8	(80)
West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 = 11.28 (80)West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 = 11.28 (80)West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 = 8.77 (80)West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 = 8.77 (80)West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 = 8.77 (80)West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 = 5.43 (80)	West	0.9x	0.77	x	0.39	x	110.22	×	0.63	x	0.7	=	13.14	(80)
West $0.9x$ 0.77 x 0.39 x 94.68 x 0.63 x 0.7 $=$ 11.28 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80) West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 $=$ 5.43 (80)	West	0.9x	0.77	x	0.39	x	110.22	×	0.63	x	0.7	=	13.14	(80)
West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80)West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80)West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 $=$ 8.77 (80)West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 $=$ 5.43 (80)	West	0.9x	0.77	x	0.39	x	94.68	×	0.63	x	0.7	=	11.28	(80)
West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 = 8.77 (80) West $0.9x$ 0.77 x 0.39 x 73.59 x 0.63 x 0.7 = 8.77 (80) West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 = 5.43 (80)	West	0.9x	0.77	×	0.39	×	94.68	×	0.63	x	0.7	=	11.28	(80)
West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 = 5.43 (80)	West	0.9x	0.77	×	0.39	×	73.59	×	0.63	x	0.7	=	8.77	(80)
	West	0.9x	0.77	×	0.39	×	73.59	×	0.63	x	0.7	=	8.77	(80)
West $0.9x$ 0.77 x 0.39 x 45.59 x 0.63 x 0.7 $=$ 5.43 (80)	West	0.9x	0.77	×	0.39	×	45.59	×	0.63	x	0.7	=	5.43	(80)
	West	0.9x	0.77	x	0.39	x	45.59	x	0.63	x	0.7	=	5.43	(80)

Mast	F					г			ı —						-
West	0.9x	0.77	×	0.3		×		4.49		0.63		0.7	=	2.92	(80)
West	0.9x	0.77	×	0.3		×		4.49		0.63		0.7	=	2.92	(80)
West	0.9x	0.77	×	0.3		×		6.15		0.63		0.7	=	1.93	(80)
West	0.9x	0.77	x	0.3	39	x	1	6.15	x	0.63	X	0.7	=	1.93	(80)
•															
Solar ((83)m=	54.85	watts, ca 96.09	alculated	for eac	h month 229.97	1	36.23	224.42	(83)m = 3	Sum(74)m . 156.98	(82)m 108.36	66.15	46.67		(83)
				r (84)m =					195.21	130.90	100.50	00.15	40.07		(00)
(84)m=	582.26	618.93	642.25	660.85	668.59	r È	46.3	618.01	595.1	577.24	560.39	553.25	560.06		(84)
	an inter	nal temr	oraturo	(heating	season					1	1	1	1		
				periods ir		·	aroa f	from Tak		1 (°C)				21	(85)
		-	• •	living are		-			ле <u>э</u> , п	II (C)				21	(00)
Ounse	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	0.94	0.92	0.9	0.85	0.77).64	0.51	0.54	0.71	0.85	0.92	0.94		(86)
											0.00	0.02	0.01		
	· · · · · · · · · · · · · · · · · · ·	· · ·	r	living ar	r È	1			r	<u> </u>	00.00	40.45	40.0	l	(87)
(87)m=	18.94	19.13	19.48	19.95	20.4	20	0.75	20.9	20.88	20.64	20.09	19.45	18.9		(07)
•	· · · · · · · · · · · · · · · · · · ·	<u> </u>		eriods ir	r	1			r	T				1	
(88)m=	19.97	19.97	19.97	19.98	19.99	19	9.99	19.99	19.99	19.99	19.99	19.98	19.98		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,	m (se	e Table	9a)						
(89)m=	0.93	0.91	0.88	0.83	0.73	0).57	0.41	0.45	0.65	0.83	0.9	0.93		(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)															
(90)m=	17.25	17.52	18.02	18.69	19.31	19	9.76	19.93	19.91	19.63	18.9	17.98	17.19		(90)
						•				1	fLA = Livir	g area ÷ (4	4) =	0.17	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	llind	a) = fl	_A x T1	+ (1 – f	LA) × T2					
(92)m=	17.54	17.8	18.27	18.91	19.5	1	9.93	20.1	20.08	19.81	19.1	18.24	17.49		(92)
Apply	adjustn	nent to t	he mear	n interna	l temper	atu	re fro	m Table	4e, wh	ere appro	opriate	1			
(93)m=	17.39	17.65	18.12	18.76	19.35	19	9.78	19.95	19.93	19.66	18.95	18.09	17.34		(93)
8. Sp	ace hea	ting requ	uirement												
						ned	at ste	ep 11 of	Table 9	b, so tha	nt Ti,m=(76)m an	d re-calo	culate	
the ut		i	i	using Ta	1	-							-		
1.1411:	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.9	tor for g	ains, nm 0.85	0.79	0.7).56	0.41	0.44	0.63	0.79	0.87	0.91		(94)
				4)m x (84				0.41	0.44	0.03	0.79	0.07	0.91		(04)
(95)m=	523	544.74	545.29	523.38	467.21	35	59.36	251.81	261.49	363.78	443.46	481.77	507.15		(95)
				perature								_			
(96)m=	4.3	4.9	6.5	8.9	11.7	<u> </u>	4.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		e for mea								ı– (96)m]	1	1	I	
	1079.14	i	954.04	801.47	620.56	1	, 16.68	269.15	283.36	448.37	677.77	894.66	1073.96		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/	/mont	h = 0.02	24 x [(97	/)m – (95	j)m] x (4	1)m		I	
(98)m=	413.77	338.86	304.11	200.23	114.09		0	0	0	0	174.32	297.28	421.71		
									Tot	al per year	(kWh/yea	r) = Sum(9	8)15,912 =	2264.37	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year									31.23	(99)
														l	

9a. En	ergy rec	quiremer	nts – Ind	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
	e heatir	•										1		
				econdar		mentary	-	(000) 4	(004)				0	(201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ Fraction of total heating from main system 4 $(202) = (202) \times [1 - (202)] =$											1	(202)		
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$											1	(204)		
	•			ting syste			0 (92.4	(206)
Efficie	ency of s		r	ementar		g system							0	(208)
Charles	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	413.77	g require 338.86	304.11	200.23	114.09	0	0	0	0	174.32	297.28	421.71		
(211)m				100 ÷ (20		Ū	Ŭ	Ū	Ū					(211)
(211)11	447.8	366.73	329.13	216.69	123.48	0	0	0	0	188.66	321.73	456.39		(211)
			I	<u> </u>				Tota	l (kWh/yea	ar) =Sum(2	1 211) _{15,1012}	2=	2450.62	(211)
Space	e heatin	g fuel (s	econdar	·y), kWh/	month							I		_
		01)] } x 1	00 ÷ (20)8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		٦
								lota	I (KVVh/yea	ar) =Sum(2	215) _{15,10} 12	2	0	(215)
	heating		iter (calc	ulated a	hove)									
Output	170.92	150.2	156.7	139.04	135.22	119.33	113.2	126.17	126.56	144.26	154.34	166.33		
Efficier	ncy of w	ater hea	ater	•									87	(216)
(217)m=	89.1	89.06	88.96	88.75	88.35	87	87	87	87	88.62	88.95	89.13		(217)
		heating,												
· ,	191.82	m x 100 168.66	176.16	156.67	153.05	137.16	130.12	145.02	145.47	162.79	173.51	186.61		
			!	I				Tota	I = Sum(2'	19a) ₁₁₂ =			1927.05	(219)
Annua	I totals									k	Wh/year	· .	kWh/year	-
Space	heating	fuel use	ed, main	system	1								2450.62	
Water	heating	fuel use	ed										1927.05	
Electric	city for p	oumps, f	ans and	electric	keep-ho	t								
centra	al heatir	ig pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	y for the	above,	kWh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	city for li	ighting											357.25	(232)
Electric	city gen	erated b	y PVs										-1281.68	(233)
Total d	elivered	l energy	for all u	ses (211)(221)	+ (231)	+ (232).	(237b)	=				3528.23	(338)
10 <u>a.</u> F	- uel <u>cos</u>	sts - <u>indi</u> v	vidu <u>al h</u> e	eating sy	stems:									_
						Fu	el			Fuel P	rice		Fuel Cost	

	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 × 0.01 =	85.28 (240)
Space heating - main system 2	(213) x	0 × 0.01 =	0 (241)

Space heating - secondary	(215)	x	13.19	x 0.01 =	0	(242)
Water heating cost (other fuel)	(219)		3.48	x 0.01 =	67.06	(247)
Pumps, fans and electric keep-hot	(231)		13.19	x 0.01 =	9.89	(249)
(if off-peak tariff, list each of (230a) to (23	30g) separately a	as applicable and a		ording to T $\times 0.01 =$		
Energy for lighting Additional standing charges (Table 12)	(202)		13.19	x 0.01 -	47.12	(250)
Additional standing charges (Table 12)					120	(251)
		f (233) to (235) x)	13.19	x 0.01 =	-169.05	(252)
Appendix Q items: repeat lines (253) and Total energy cost	d (254) as neede (245)(247) + (250)				160.3	(255)
11a. SAP rating - individual heating sys					100.0](,
Energy cost deflator (Table 12)					0.42	(256)
	[(255) x (256)] ÷ [(4)	+ 45.0] =			0.42	(257)
SAP rating (Section 12)					92.01	(258)
12a. CO2 emissions – Individual heatin	g systems includ	ling micro-CHP				-
	Ene kWh	rgy /year	Emission fa kg CO2/kWh		Emissions kg CO2/yea	r
Space heating (main system 1)	(211)	x	0.216	=	529.33	(261)
Space heating (secondary)	(215)	x	0.519	=	0	(263)
Water heating	(219)	x	0.216	=	416.24	(264)
Space and water heating	(261)	+ (262) + (263) + (264) =	=		945.58	(265)
Electricity for pumps, fans and electric ke	eep-hot (231)	x	0.519	=	38.93	(267)
Electricity for lighting	(232)	x	0.519	=	185.41	(268)
Energy saving/generation technologies Item 1			0.519	=	-665.19	(269)
Total CO2, kg/year		SI	um of (265)(271) =		504.72	(272)
CO2 emissions per m ²		(2	?72) ÷ (4) =		6.96	(273)
El rating (section 14)					94	(274)
13a. Primary Energy						
	Ene kWh	rgy /year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211)	x	1.22	=	2989.75	(261)
Space heating (secondary)	(215)	x	3.07	=	0	(263)
Energy for water heating	(219)	x	1.22	=	2351	(264)
Space and water heating		+ (262) + (263) + (264) =	= 		5340.76	(265)
Electricity for pumps, fans and electric ke	eep-hot (231)	x	3.07	=	230.25	(267)
Electricity for lighting	(232)	x	0	=	1096.75	(268)

Energy saving/generation technologiesItem 13.07=-3934.77 (269)'Total Primary Energysum of (265)...(271) =2732.98 (272)Primary energy kWh/m²/year(272) ÷ (4) =37.7 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 8

Dwelling type: Located in: Region: Cross ventilation possible: Number of storeys: Front of dwelling faces: Overshading: Overshading: Overhangs: Thermal mass parameter: Night ventilation: Blinds, curtains, shutters:	Semi-detached House England East Anglia Yes 2 South Average or unknown None Indicative Value Low False Dark-coloured curtain or roller blind	
Ventilation rate during hot weather (ach): Overheating Details:	4 (Windows open half the time)	
Summer ventilation heat loss coefficient:	229.68	(P1)

Summer ventilation heat loss coefficient:	229.68
Transmission heat loss coefficient:	49.2
Summer heat loss coefficient:	278.9

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South (W_1)	0	1
South (W_2)	0	1
West (W_3)	0	1
North (W_4)	0	1
West (W_5)	0	1
North (W_6)	0	1
North (W_7)	0	1

Solar shading:

Orientation:	Z blind	ls:	Solar access:	0	verhangs:	Z summer:	
South (W_1)	0.85		0.9	1		0.76	(P8)
South (W_2)	0.85		0.9	1		0.76	(P8)
West (W_3)	0.85		0.9	1		0.76	(P8)
North (W_4)	0.85		0.9	1		0.76	(P8)
West (W_5)	0.85		0.9	1		0.76	(P8)
North (W_6)	0.85		0.9	1		0.76	(P8)
North (W_7)	0.85		0.9	1		0.76	(P8)
Solar gains:							
Orientation		Area	Flux	g_	FF	Shading	Gains
South (W_1)	0.9 x	1.17	114.84	0.63	0.7	0.76	40.8
South (W_2)	0.9 x	1.12	114.84	0.63	0.7	0.76	39.05
West (W_3)	0.9 x	0.39	119.47	0.63	0.7	0.76	14.15
North (W_4)	0.9 x	2.98	82.12	0.63	0.7	0.76	74.31
West (W_5)	0.9 x	0.39	119.47	0.63	0.7	0.76	14.15
North (W_6)	0.9 x	1.14	82.12	0.63	0.7	0.76	28.43
North (W_7)	0.9 x	1.25	82.12	0.63	0.7	0.76	31.17
						Total	242.04 (P3/P4)
Internal gains:							
					June	July	August
Internal gains					407.07	390.59	398.89
Total summer gains					664.44	632.63	608.57 (P5)

(P2)

SAP 2012 Overheating Assessment

Summer gain/loss ratio	2.38	2.27	2.18	(P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6	
Thermal mass temperature increment	1.3	1.3	1.3	
Threshold temperature	19.08	21.17	21.08	(P7)
Likelihood of high internal temperature	Not significant	Slight	Slight	

Assessment of likelihood of high internal temperature:

<u>Slight</u>