Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 Printed on 29 November 2022 at 15:11:28

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 91.78m²

Site Reference: Bell Road, Bottisham

Plot Reference: Plot 5

Address: Plot 5

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 18.22 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 7.93 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 56.1 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 49.8 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.38 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)
Maximum 10.0

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 018403):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular)

Efficiency 89.8 % SEDBUK2009

Minimum 88.0 %

Secondary heating system: None

OK

OK

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.	32 kWh/day	
st mater etchage.	Permitted by DBSCG: 2.30	•	ОК
Primary pipework insulated:	Yes		OK
Controls			
Space heating controls	TTZC by plumbing and ele	ectrical services	OK
Hot water controls:	Cylinderstat		OK
	Independent timer for DHV	V	OK
Boiler interlock:	Yes		ОК
Low energy lights			
Percentage of fixed lights with lo	ow-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Not applicable			
Summertime temperature			
Overheating risk (East Anglia):		Medium	OK
sed on:			
Overshading:		Average or unknown	
Windows facing: West		1.46m²	
Windows facing: North		0.54m²	
Windows facing: East		1.48m²	
Windows facing: East		1.5m²	
Windows facing: West		0.66m²	
Windows facing: West		0.99m²	
Windows facing: East		0.86m²	
Windows facing: West		2.43m²	
Windows facing: West		1.33m²	
Windows facing: East		0.66m²	
Windows facing: North		2.21m²	
Windows facing: North		0.54m²	
Ventilation rate:		3.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
Company of the second of the s			
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m ² K	
Photovoltaic array			

Predicted Energy Assessment

Plot 5

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 91.78 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Address: Plot 5 Located in: England Region: East Anglia

UPRN:

03 November 2022 Date of assessment: 29 November 2022 Date of certificate: New dwelling design stage Assessment type:

New dwelling Transaction type: Tenure type: Unknown Related party disclosure: No related party Thermal Mass Parameter: Indicative Value Low

True Water use <= 125 litres/person/day:

508 PCDF Version:

Dwelling type: House

Semi-detached Detachment: 2022 Year Completed:

Floor Location: Floor area:

46.82 m² 2.4 m Floor 0 Floor 1 44.96 m² 2.4 m

15.94 m² (fraction 0.174) Living area:

Front of dwelling faces:

\cap	non	ina t	VIDOC
\cup	pen	II IY I	ypes:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
D_14	Manufacturer	Solid			
W_115	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_116	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_117	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_118	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_119	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_120	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_121	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_122	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_123	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_124	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_125	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	
W_126	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	

Storey height:

Name:	Gap:	Frame Factor:	g-value:	U-value:	Area:	No. of Openings:
D_14	mm	0	0	1.2	2.01	1
W_115	16mm or more	0.7	0.63	1.4	1.46	1
W_116	16mm or more	0.7	0.63	1.4	0.54	1
W_117	16mm or more	0.7	0.63	1.4	1.48	1
W_118	16mm or more	0.7	0.63	1.4	1.5	1
W_119	16mm or more	0.7	0.63	1.4	0.66	1
W_120	16mm or more	0.7	0.63	1.4	0.99	1
W_121	16mm or more	0.7	0.63	1.4	0.86	1
W_122	16mm or more	0.7	0.63	1.4	2.43	1
W_123	16mm or more	0.7	0.63	1.4	1.33	1
W_124	16mm or more	0.7	0.63	1.4	0.66	1
W_125	16mm or more	0.7	0.63	1.4	2.21	1
W_126	16mm or more	0.7	0.63	1.4	0.54	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
D_14	Doors	Wall 1	East	2.01	1
W_115	Windows	Wall 1	West	1.46	1
W_116	Windows	Wall 1	North	0.54	1
W_117	Windows	Wall 1	East	1.48	1
W_118	Windows	Wall 1	East	1.5	1
W_119	Windows	Wall 1	West	0.66	1
W_120	Windows	Wall 1	West	0.99	1
W_121	Windows	Wall 1	East	0.86	1
W_122	Windows	Wall 1	West	2.43	1
W_123	Windows	Wall 1	West	1.33	1
W_124	Windows	Wall 1	East	0.66	1
W_125	Windows	Wall 1	North	2.21	1
W_126	Windows	Wall 1	North	0.54	1

Overshading: Average or unknown

Opaque Element	s:	<u> </u>					
a least the second							
Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemen	<u>ts</u>						
Wall 1	147.37	16.67	130.7	0.19	0	False	N/A
Roof 1	45.12	0	45.12	0.11	0		N/A
Roof 2	1.7	0	1.7	0.11	0		N/A
Floor 1	46.82			0.11			N/A
Internal Element	<u>ts</u>						
Party Elements							
Party Wall	41.31						N/A

Thermal bridges

Thermal bridges:	User-defined (individual PSI-values) Y-Value =	0.0633
------------------	--	--------

	Psi-value	valuos	1 14140 0.0000
Length		F 0	Others links to the deather with an attendant links to
8.2	0.3	E2	Other lintels (including other steel lintels)
9.42	0.04	E3	Sill
28.08	0.05	E4	Jamb
18.98	0.16	E5	Ground floor (normal)
17.26	0.07	E6	Intermediate floor within a dwelling
11.14	0.06	E10	Eaves (insulation at ceiling level)
16.2	0.24	E12	Gable (insulation at ceiling level)
5.1	0.09	E16	Corner (normal)
4.8	-0.09	E17	Corner (inverted – internal area greater than external area)
5.68	0.08	E14	Flat roof
0	0.3	E2	Other lintels (including other steel lintels)
0	0.04	E3	Sill
0	0.05	E4	Jamb
0	0.16	E5	Ground floor (normal)
0	0.07	E6	Intermediate floor within a dwelling
0	0.06	E10	Eaves (insulation at ceiling level)
0	0.24	E12	Gable (insulation at ceiling level)
0	0.09	E16	Corner (normal)
0	-0.09	E17	Corner (inverted – internal area greater than external area)
0	0.06	E18	Party wall between dwellings
8.1	0.16	P1	Ground floor
8.1	0	P2	Intermediate floor within a dwelling
0	0.16	P1	Ground floor
0	0	P2	Intermediate floor within a dwelling
5.57	0.08	R4	Ridge (vaulted ceiling)

0 0.08 R4 Ridge (vaulted ceiling)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 5

Main heating system

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular boiler)
Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature <= 45°C

Room-sealed Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres

Sylinder volume. 210 litres

Cylinder insulation: Measured loss, 1.32kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2.5 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: East

Assess Zero Carbon Home:

No

		User Details:			
Assessor Name:	Liam Mason	Stroma Numb	or: STRO	033679	
Software Name:	Stroma FSAP 2012	Software Vers		n: 1.0.5.58	
Contware Hame.	Ottoma i Orti 2012	Property Address: Plot 5	JOIL VOICE	110.0.0	
Address :	Plot 5	Tropony riadroson rist s			
1. Overall dwelling dime	nsions:				
<u> </u>		Area(m²)	Av. Height(m)	Volume(m³	•)
Ground floor		46.82 (1a) x	2.4 (2a) =	112.37	(3a)
First floor		44.96 (1b) x	2.4 (2b) =	107.9	(3b)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1n) 91.78 (4)			_
Dwelling volume		(3a)+(3b)+	(3c)+(3d)+(3e)+(3n) =	220.27	(5)
2. Ventilation rate:					
	main second heating heating		total	m³ per hou	r
Number of chimneys	0 + 0	+ 0 =	0 x 40 =	0	(6a)
Number of open flues	0 + 0	+ 0 =	0 x 20 =	0	(6b)
Number of intermittent fa	ns		2 x 10 =	20	(7a)
Number of passive vents		Γ	0 x 10 =	0	(7b)
Number of flueless gas fi	res		0 x 40 =	0	(7c)
		_			
Inditantian due to abiece	fl., and fam. (60) (6b)	·/7c) · /7b) · /7c)		anges per ho	_
•	ys, flues and fans = (6a)+(6b) een carried out or is intended, proc	eed to (17), otherwise continue fron	\div (5) = m (9) to (16)	0.09	(8)
Number of storeys in the		· //		0	(9)
Additional infiltration			[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or timber frame	or 0.35 for masonry constru	ction	0	(11)
if both types of wall are pr deducting areas of openir	resent, use the value corresponding	to the greater wall area (after			_
=	loor, enter 0.2 (unsealed) or	0.1 (sealed), else enter 0		0	(12)
If no draught lobby, ent		,		0	(13)
Percentage of windows	s and doors draught stripped			0	(14)
Window infiltration	3	0.25 - [0.2 x (14) ÷ 100	0] =	0	(15)
Infiltration rate		(8) + (10) + (11) + (12)) + (13) + (15) =	0	(16)
Air permeability value,	q50, expressed in cubic me	res per hour per square met	tre of envelope area	5	(17)
	ity value, then (18) = [(17) ÷ 20]		·	0.34	(18)
Air permeability value applie	s if a pressurisation test has been o	lone or a degree air permeability is	being used		_
Number of sides sheltere	d			2	(19)
Shelter factor		$(20) = 1 - [0.075 \times (19)]$)] =	0.85	(20)
Infiltration rate incorporat	ing shelter factor	(21) = (18) x (20) =		0.29	(21)
	g cc.tcacto.			0.20	(=.)
Infiltration rate modified for			-	0.20	(= · /
		Jul Aug Sep	Oct Nov Dec	0.20	(=-/

4.3

3.8

3.8

3.7

4.3

4.5

4.7

Wind Factor (2	2a)m =	(22)m ÷	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
	_								<u>!</u>				
Adjusted infiltra		<u> </u>				<u> </u>	`	` ´	I 0.04	0.00			
0.37 Calculate effec	0.36 ctive air	0.35 change	0.32 rate for t	0.31 he appli	0.28 Cable ca	0.28 S e	0.27	0.29	0.31	0.33	0.34		
If mechanica		-		upp	- C.I.O. T. G. G.							0	(23a)
If exhaust air he	eat pump i	using Appe	endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)		ĺ	0	(23b)
If balanced with	heat reco	very: effic	iency in %	allowing f	or in-use f	actor (from	n Table 4h) =			İ	0	(23c)
a) If balance	d mecha	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [1	– (23c)	÷ 100]	
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance	d mecha	anical ve	entilation	without	heat rec	covery (N	ЛV) (24b	m = (22)	2b)m + (2	23b)			
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				•	-								
if (22b)m		<u> </u>	<u> </u>	``	<u> </u>	· ` `	ŕ		· ` ·	i e			(0.4.)
(24c)m = 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural v if (22b)m									0.51				
(24d)m = 0.57	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(24d)
Effective air			<u> </u>				<u> </u>						
(25)m= 0.57	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)
							•		•				
3 Heat Insset	s and he	at loss r	naramete	or.									
3. Heat losses	s and he Gros	•			Net Ar	ea	U-valı	ue	AXU		k-value		ΑΧk
3. Heat losses		SS	oaramete Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	≺)	k-value kJ/m²-ł		A X k kJ/K
	Gros	SS	Openin	gs						<)			
ELEMENT	Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	<) 			kJ/K
ELEMENT Doors	Gros area	SS	Openin	gs	A ,r	m ² x x1/	W/m2	eK = 0.04] =	(W/I 2.412	<) 			kJ/K (26)
ELEMENT Doors Windows Type	Gros area 1	SS	Openin	gs	A ,r 2.01	m ²	W/m2 1.2 /[1/(1.4)+	eK = 0.04] = 0.04] =	(W/l 2.412 1.94	<) 			kJ/K (26) (27)
ELEMENT Doors Windows Type Windows Type	Gros area	SS	Openin	gs	A ,r 2.01 1.46 0.54	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04] = 0.04] =	(W/I 2.412 1.94 0.72	<) 			(26) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48	x1/ x1/ x1/ x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.412 1.94 0.72 1.96	<) 			kJ/K (26) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48	x1/ x1/ x1/ x1/ x1/ x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04]	(W/I 2.412 1.94 0.72 1.96 1.99	<)			kJ/K (26) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5 6	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04]	(W/I 2.412 1.94 0.72 1.96 1.99 0.88	<)			kJ/K (26) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 3 4 4 5 5 6 6 7	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04]	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Windows Type	Gros area 1 2 3 4 4 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99	x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1 2 3 4 4 5 6 7 8 8	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43	x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1 2 3 4 5 6 7 8 8 9 10	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33 0.66	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76 0.88	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1	SS	Openin	gs	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33 0.66 2.21	x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76 0.88 2.93				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type	Gros area 1	ss (m²)	Openin	gs ₂	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33 0.66 2.21	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76 0.88 2.93 0.72				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Floor Walls	Gros area 1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 10 11 1 12 147.	ss (m²)	Openin m	gs ₂	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33 0.66 2.21 0.54 46.82 130.7	x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76 0.88 2.93 0.72 5.1502 24.83				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Windows Type Floor	Gros area 1 2 2 3 4 4 5 5 6 6 7 8 8 9 10 11 1 1 2	ss (m²)	Openin	gs ₂	A ,r 2.01 1.46 0.54 1.48 1.5 0.66 0.99 0.86 2.43 1.33 0.66 2.21 0.54 46.82	x1/	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	K	(W/I 2.412 1.94 0.72 1.96 1.99 0.88 1.31 1.14 3.22 1.76 0.88 2.93 0.72 5.1502				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

Total area of elements, m² (31)241.01 Party wall (32)41.31 * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions (26)...(30) + (32) =Fabric heat loss, $W/K = S(A \times U)$ (33)56.98 Heat capacity $Cm = S(A \times k)$ ((28)...(30) + (32) + (32a)...(32e) =(34)26002.78 Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Low (35)100 For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation. Thermal bridges: S (L x Y) calculated using Appendix K (36)15.27 if details of thermal bridging are not known (36) = $0.05 \times (31)$ Total fabric heat loss (33) + (36) =72.25 (37)Ventilation heat loss calculated monthly (38)m = $0.33 \times (25)$ m x (5)Feb May Jul Jan Mar Apr Jun Aug Sep Oct Nov Dec 41.11 40.56 (38)41.3 40.92 40.04 39.87 39.1 38.95 39.39 39.87 40.2 (38)m =39.1 Heat transfer coefficient, W/K (39)m = (37) + (38)m 111.34 (39)m =113.55 113.36 113.17 112.28 112.12 111.34 111.2 111.64 112.12 112.45 112.8 (39)Average = $Sum(39)_{1...12}/12=$ 112.28 Heat loss parameter (HLP), W/m2K (40)m = (39)m \div (4)1.24 (40)m =1.24 1.22 1.21 1.21 1.21 1.22 1.22 1.23 1.23 (40)Average = $Sum(40)_{1...12}/12=$ 1.22 Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sen Oct Nov Dec (41)m =31 28 31 30 31 30 31 31 30 31 30 31 (41)4. Water heating energy requirement: kWh/year: Assumed occupancy, N 2.65 (42)if TFA > 13.9, N = 1 + 1.76 x [1 - $\exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, N = 1Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 97.12 (43)Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Oct Jan Feb Mar Apr May Jun Jul Aug Sep Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)(44)m =106.83 102.95 99.06 95.18 91.29 87.41 87.41 91.29 95.18 99.06 102.95 106.83 (44)Total = $Sum(44)_{1...12}$ = 1165.45 Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m =158.43 138.56 142.99 124.66 119.61 103.22 95.65 109.75 111.07 129.44 141.29 153.43 Total = $Sum(45)_{1...12}$ = 1528.09 (45)If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)(46)m =23.76 20.78 21.45 18.7 17.94 15.48 14.35 16.46 16.66 19.42 21.19 23.01 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 210 (47)If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss:

a) If manufacturer's declared loss factor is known (kWh/day)		1.32	(48)
Temperature factor from Table 2b		0.54	(49)
Energy lost from water storage, kWh/year	$(48) \times (49) =$	0.71	(50)
 b) If manufacturer's declared cylinder loss factor is not know Hot water storage loss factor from Table 2 (kWh/litre/day) 	n:		7 (54)
If community heating see section 4.3		0	(51)
Volume factor from Table 2a		0	(52)
Temperature factor from Table 2b		0	(53)
Energy lost from water storage, kWh/year	(47) x (51) x (52) x (53) =	0	(54)
Enter (50) or (54) in (55)		0.71	(55)
Water storage loss calculated for each month	$((56)m = (55) \times (41)m$		
(56)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38 22.1	21.38 22.1	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57) m = (56) m where	(H11) is from Append	H xib
(57)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38 22.1	21.38 22.1	(57)
Primary circuit loss (annual) from Table 3		0	(58)
Primary circuit loss calculated for each month (59)m = (58) ÷	365 × (41)m		_
(modified by factor from Table H5 if there is solar water hea	ating and a cylinder therm	ostat)	
(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26	3 23.26 22.51 23.26	22.51 23.26	(59)
Combi loss calculated for each month (61)m = (60) \div 365 × (11)m		
(61)m= 0 0 0 0 0 0 0	0 0 0	0 0	(61)
Total heat required for water heating calculated for each mon	th (62)m = 0.85 × (45)m +	(46)m + (57)m +	ر - (59)m + (61)m
(62)m= 203.79 179.53 188.35 168.55 164.97 147.11 141	155.11 154.96 174.8	185.19 198.79	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quar		<u> </u>	_
Solar Drivi input calculated using Appendix G of Appendix r (negative quar	itity) (enter '0' if no solar contribu	tion to water heating))
(add additional lines if FGHRS and/or WWHRS applies, see		tion to water heating)	
		tion to water heating)	(63)
(add additional lines if FGHRS and/or WWHRS applies, see	Appendix G)	-	7
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0	Appendix G)	-	7
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 Output from water heater	Appendix G)	0 0	7
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 Output from water heater	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat	0 0 185.19 198.79 er (annual) ₁₁₂	(63)
(add additional lines if FGHRS and/or WWHRS applies, see 26 (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m	0 0 185.19 198.79 er (annual) ₁₁₂	(63)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m 72.78 72.05 79.32	0 0 185.19 198.79 er (annual) ₁₁₂ 1 + (57)m + (59)m 82.1 87.3	(63) 2062.16 (64)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m 72.78 72.05 79.32	0 0 185.19 198.79 er (annual) ₁₁₂ 1 + (57)m + (59)m 82.1 87.3	(63) 2062.16 (64)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m 72.78 72.05 79.32	0 0 185.19 198.79 er (annual) ₁₁₂ 1 + (57)m + (59)m 82.1 87.3	(63) 2062.16 (64)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m 72.78 72.05 79.32	0 0 185.19 198.79 er (annual) ₁₁₂ 1 + (57)m + (59)m 82.1 87.3	(63) 2062.16 (64)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0m + (61)m] + 0.8 x [(46)m 72.78 72.05 79.32 e dwelling or hot water is a	0 0 185.19 198.79 er (annual) ₁₁₂ 1 + (57)m + (59)m 82.1 87.3 from community I	(63) 2062.16 (64)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0 0 0 155.11 154.96 174.8 Output from water heat 0 72.78 72.05 79.32 e dwelling or hot water is Aug Sep Oct 6 158.96 158.96 158.96	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I	(63) 2062.16 (64) [1] [65] [65] [65]
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I	(63) 2062.16 (64) [1] [65] [65] [65]
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) ₁₁₂ n + (57)m + (59)m 82.1 87.3 from community I	(63) 2062.16 (64) (65) neating (66)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) ₁₁₂ n + (57)m + (59)m 82.1 87.3 from community I	(63) 2062.16 (64) (65) neating (66)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 155.11 154.96 174.8 Output from water heaten 0	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I Nov Dec 158.96 158.96 54.34 57.93	(63) 2062.16 (64) (65) neating (66) (67)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I Nov Dec 158.96 158.96 54.34 57.93	(63) 2062.16 (64) (65) neating (66) (67)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I Nov Dec 158.96 158.96 54.34 57.93	(63) 2062.16 (64) (65) neating (66) (67)
(add additional lines if FGHRS and/or WWHRS applies, see (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Appendix G) 0	0 0 185.19 198.79 er (annual) 112 1 + (57)m + (59)m 82.1 87.3 from community I Nov Dec 158.96 158.96 54.34 57.93	(63) 2062.16 (64) (65) neating (66) (67)

Losses e.g. evaporation (negative values) (Table 5)													
(71)m=	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	-105.97	(71)
Water	heating	gains (T	able 5)										
(72)m=	119.58	117.33	112.68	106.34	102.23	96.44	91.52	97.82	100.06	106.62	114.02	117.34	(72)
Total i	nternal	gains =	1		-	(66)	m + (67)m	+ (68)m +	- (69)m + ((70)m + (7	1)m + (72)	m	
(73)m=	647.13	642.34	618.88	582.52	545.21	511.95	492.63	501.49	522.53	559.11	599.71	630.51	(73)
6. Sol	ar gains	s:											

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

	tion:	Access Facto Table 6d		Area m²	a and	Flux Table 6a	1110113	g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	0.54	x	10.63	x	0.63	x	0.7	=	1.75	(74)
North	0.9x	0.77	x	2.21	x	10.63	x	0.63	x	0.7	=	7.18	(74)
North	0.9x	0.77	x	0.54	x	10.63	x	0.63	x	0.7	=	1.75	(74)
North	0.9x	0.77	x	0.54	x	20.32	x	0.63	x	0.7	=	3.35	(74)
North	0.9x	0.77	x	2.21	x	20.32	x	0.63	x	0.7	=	13.72	(74)
North	0.9x	0.77	x	0.54	x	20.32	x	0.63	x	0.7	=	3.35	(74)
North	0.9x	0.77	x	0.54	x	34.53	x	0.63	x	0.7] =	5.7	(74)
North	0.9x	0.77	x	2.21	x	34.53	x	0.63	x	0.7] =	23.32	(74)
North	0.9x	0.77	X	0.54	X	34.53	X	0.63	X	0.7	=	5.7	(74)
North	0.9x	0.77	x	0.54	x	55.46	x	0.63	X	0.7] =	9.15	(74)
North	0.9x	0.77	X	2.21	X	55.46	X	0.63	X	0.7	=	37.46	(74)
North	0.9x	0.77	X	0.54	x	55.46	x	0.63	x	0.7	=	9.15	(74)
North	0.9x	0.77	X	0.54	x	74.72	x	0.63	x	0.7	=	12.33	(74)
North	0.9x	0.77	X	2.21	X	74.72	X	0.63	X	0.7	=	50.46	(74)
North	0.9x	0.77	X	0.54	x	74.72	x	0.63	x	0.7	=	12.33	(74)
North	0.9x	0.77	X	0.54	X	79.99	X	0.63	X	0.7	=	13.2	(74)
North	0.9x	0.77	X	2.21	X	79.99	X	0.63	X	0.7	=	54.02	(74)
North	0.9x	0.77	X	0.54	x	79.99	X	0.63	X	0.7	=	13.2	(74)
North	0.9x	0.77	X	0.54	X	74.68	X	0.63	X	0.7	=	12.32	(74)
North	0.9x	0.77	x	2.21	x	74.68	X	0.63	x	0.7	=	50.44	(74)
North	0.9x	0.77	x	0.54	x	74.68	X	0.63	x	0.7	=	12.32	(74)
North	0.9x	0.77	X	0.54	X	59.25	X	0.63	x	0.7	=	9.78	(74)
North	0.9x	0.77	X	2.21	X	59.25	X	0.63	X	0.7	=	40.02	(74)
North	0.9x	0.77	X	0.54	x	59.25	X	0.63	X	0.7	=	9.78	(74)
North	0.9x	0.77	X	0.54	X	41.52	X	0.63	x	0.7	=	6.85	(74)
North	0.9x	0.77	X	2.21	X	41.52	X	0.63	X	0.7	=	28.04	(74)
North	0.9x	0.77	x	0.54	x	41.52	x	0.63	x	0.7] =	6.85	(74)
North	0.9x	0.77	X	0.54	X	24.19	X	0.63	X	0.7] =	3.99	(74)
North	0.9x	0.77	X	2.21	x	24.19	x	0.63	X	0.7	=	16.34	(74)
North	0.9x	0.77	X	0.54	x	24.19	x	0.63	x	0.7	=	3.99	(74)

N. d	_		7		1		1		1		1		_
North	0.9x	0.77	X	0.54	X	13.12	X	0.63	X	0.7	=	2.16	(74)
North	0.9x	0.77	X	2.21	X	13.12	X	0.63	X	0.7	=	8.86	(74)
North	0.9x	0.77	X	0.54	X	13.12	X	0.63	X	0.7	=	2.16	(74)
North	0.9x	0.77	X	0.54	X	8.86	X	0.63	X	0.7	=	1.46	(74)
North	0.9x	0.77	X	2.21	X	8.86	X	0.63	X	0.7	=	5.99	(74)
North	0.9x	0.77	X	0.54	X	8.86	X	0.63	X	0.7	=	1.46	(74)
East	0.9x	0.77	X	1.48	X	19.64	X	0.63	X	0.7	=	8.88	(76)
East	0.9x	0.77	X	1.5	X	19.64	X	0.63	X	0.7	=	9	(76)
East	0.9x	0.77	X	0.86	X	19.64	X	0.63	X	0.7	=	5.16	(76)
East	0.9x	0.77	X	0.66	X	19.64	X	0.63	x	0.7	=	3.96	(76)
East	0.9x	0.77	X	1.48	X	38.42	X	0.63	X	0.7	=	17.38	(76)
East	0.9x	0.77	X	1.5	X	38.42	X	0.63	X	0.7	=	17.61	(76)
East	0.9x	0.77	X	0.86	X	38.42	X	0.63	X	0.7	=	10.1	(76)
East	0.9x	0.77	X	0.66	X	38.42	X	0.63	X	0.7	=	7.75	(76)
East	0.9x	0.77	X	1.48	X	63.27	X	0.63	X	0.7	=	28.62	(76)
East	0.9x	0.77	X	1.5	X	63.27	x	0.63	x	0.7	=	29.01	(76)
East	0.9x	0.77	X	0.86	X	63.27	x	0.63	x	0.7	=	16.63	(76)
East	0.9x	0.77	X	0.66	X	63.27	x	0.63	x	0.7	=	12.76	(76)
East	0.9x	0.77	X	1.48	X	92.28	x	0.63	x	0.7	=	41.74	(76)
East	0.9x	0.77	X	1.5	x	92.28	x	0.63	X	0.7	=	42.3	(76)
East	0.9x	0.77	X	0.86	X	92.28	x	0.63	x	0.7	=	24.25	(76)
East	0.9x	0.77	X	0.66	x	92.28	x	0.63	x	0.7	=	18.61	(76)
East	0.9x	0.77	X	1.48	X	113.09	x	0.63	X	0.7	=	51.15	(76)
East	0.9x	0.77	X	1.5	x	113.09	x	0.63	X	0.7	=	51.84	(76)
East	0.9x	0.77	X	0.86	x	113.09	x	0.63	x	0.7	=	29.72	(76)
East	0.9x	0.77	X	0.66	X	113.09	X	0.63	x	0.7	=	22.81	(76)
East	0.9x	0.77	X	1.48	X	115.77	x	0.63	x	0.7	=	52.36	(76)
East	0.9x	0.77	X	1.5	x	115.77	x	0.63	x	0.7	=	53.07	(76)
East	0.9x	0.77	X	0.86	X	115.77	X	0.63	x	0.7	=	30.43	(76)
East	0.9x	0.77	X	0.66	X	115.77	x	0.63	x	0.7	=	23.35	(76)
East	0.9x	0.77	X	1.48	x	110.22	x	0.63	x	0.7	=	49.85	(76)
East	0.9x	0.77	X	1.5	x	110.22	x	0.63	x	0.7	=	50.53	(76)
East	0.9x	0.77	X	0.86	x	110.22	x	0.63	x	0.7	=	28.97	(76)
East	0.9x	0.77	x	0.66	x	110.22	x	0.63	x	0.7	j =	22.23	(76)
East	0.9x	0.77	x	1.48	x	94.68	x	0.63	x	0.7] =	42.82	(76)
East	0.9x	0.77	x	1.5	x	94.68	x	0.63	x	0.7] =	43.4	(76)
East	0.9x	0.77	x	0.86	x	94.68	x	0.63	х	0.7	j =	24.88	(76)
East	0.9x	0.77	x	0.66	x	94.68	x	0.63	x	0.7	j =	19.1	(76)
East	0.9x	0.77	x	1.48	x	73.59	x	0.63	x	0.7	=	33.28	(76)
East	0.9x	0.77	×	1.5	x	73.59	x	0.63	x	0.7	=	33.73	(76)
East	0.9x	0.77	X	0.86	x	73.59	x	0.63	x	0.7	=	19.34	(76)
			-		•		•		•		•		_

	_		_						•				_
East	0.9x	0.77	X	0.66	X	73.59	X	0.63	X	0.7	=	14.84	(76)
East	0.9x	0.77	X	1.48	X	45.59	X	0.63	X	0.7	=	20.62	(76)
East	0.9x	0.77	X	1.5	X	45.59	X	0.63	X	0.7	=	20.9	(76)
East	0.9x	0.77	X	0.86	X	45.59	X	0.63	X	0.7	=	11.98	(76)
East	0.9x	0.77	X	0.66	x	45.59	x	0.63	X	0.7	=	9.2	(76)
East	0.9x	0.77	X	1.48	x	24.49	x	0.63	x	0.7	=	11.08	(76)
East	0.9x	0.77	X	1.5	X	24.49	X	0.63	x	0.7	=	11.23	(76)
East	0.9x	0.77	X	0.86	x	24.49	x	0.63	x	0.7	=	6.44	(76)
East	0.9x	0.77	X	0.66	x	24.49	x	0.63	x	0.7	=	4.94	(76)
East	0.9x	0.77	X	1.48	X	16.15	X	0.63	X	0.7	=	7.31	(76)
East	0.9x	0.77	X	1.5	x	16.15	x	0.63	X	0.7	=	7.4	(76)
East	0.9x	0.77	X	0.86	x	16.15	x	0.63	x	0.7	=	4.24	(76)
East	0.9x	0.77	X	0.66	x	16.15	X	0.63	X	0.7	=	3.26	(76)
West	0.9x	0.77	X	1.46	x	19.64	X	0.63	X	0.7	=	8.76	(80)
West	0.9x	0.77	X	0.66	x	19.64	x	0.63	x	0.7	=	3.96	(80)
West	0.9x	0.77	X	0.99	x	19.64	X	0.63	X	0.7	=	5.94	(80)
West	0.9x	0.77	X	2.43	x	19.64	x	0.63	x	0.7	=	14.59	(80)
West	0.9x	0.77	X	1.33	X	19.64	X	0.63	x	0.7	=	7.98	(80)
West	0.9x	0.77	X	1.46	x	38.42	x	0.63	x	0.7	=	17.14	(80)
West	0.9x	0.77	X	0.66	x	38.42	X	0.63	X	0.7	=	7.75	(80)
West	0.9x	0.77	X	0.99	X	38.42	X	0.63	x	0.7	=	11.62	(80)
West	0.9x	0.77	X	2.43	x	38.42	X	0.63	X	0.7	=	28.53	(80)
West	0.9x	0.77	X	1.33	x	38.42	X	0.63	X	0.7	=	15.62	(80)
West	0.9x	0.77	X	1.46	x	63.27	X	0.63	X	0.7	=	28.23	(80)
West	0.9x	0.77	X	0.66	X	63.27	X	0.63	X	0.7	=	12.76	(80)
West	0.9x	0.77	X	0.99	X	63.27	X	0.63	X	0.7	=	19.14	(80)
West	0.9x	0.77	X	2.43	x	63.27	X	0.63	X	0.7	=	46.99	(80)
West	0.9x	0.77	X	1.33	x	63.27	X	0.63	X	0.7	=	25.72	(80)
West	0.9x	0.77	X	1.46	X	92.28	X	0.63	X	0.7	=	41.17	(80)
West	0.9x	0.77	X	0.66	x	92.28	x	0.63	x	0.7	=	18.61	(80)
West	0.9x	0.77	X	0.99	x	92.28	x	0.63	x	0.7	=	27.92	(80)
West	0.9x	0.77	X	2.43	x	92.28	x	0.63	x	0.7	=	68.53	(80)
West	0.9x	0.77	X	1.33	X	92.28	X	0.63	x	0.7	=	37.51	(80)
West	0.9x	0.77	X	1.46	x	113.09	x	0.63	X	0.7	=	50.46	(80)
West	0.9x	0.77	X	0.66	x	113.09	x	0.63	x	0.7	=	22.81	(80)
West	0.9x	0.77	X	0.99	x	113.09	x	0.63	x	0.7	=	34.22	(80)
West	0.9x	0.77	X	2.43	x	113.09	x	0.63	x	0.7	=	83.99	(80)
West	0.9x	0.77	X	1.33	x	113.09	X	0.63	x	0.7	=	45.97	(80)
West	0.9x	0.77	x	1.46	x	115.77	x	0.63	x	0.7	=	51.66	(80)
West	0.9x	0.77	X	0.66	x	115.77	x	0.63	x	0.7	=	23.35	(80)
West	0.9x	0.77	×	0.99	X	115.77	X	0.63	X	0.7	=	35.03	(80)

	_											_				
West	0.9x	0.77		ĸ	2.43	X	1	15.77	X		0.63	X	0.7	=	85.98	(80)
West	0.9x	0.77	:	K	1.33	X	1	15.77	X		0.63	X	0.7	=	47.06	(80)
West	0.9x	0.77	:	ĸ	1.46	X	1	10.22	X		0.63	X	0.7	=	49.18	(80)
West	0.9x	0.77	:	ĸ	0.66	X	1	10.22	X		0.63	x	0.7	=	22.23	(80)
West	0.9x	0.77		ĸ	0.99	X	1	10.22	X		0.63	x	0.7	=	33.35	(80)
West	0.9x	0.77		ĸ	2.43	X	1	10.22	X		0.63	X	0.7	=	81.85	(80)
West	0.9x	0.77		ĸ	1.33	X	1	10.22	X		0.63	x	0.7	=	44.8	(80)
West	0.9x	0.77		ĸ	1.46	X	9	4.68	X		0.63	x	0.7	=	42.24	(80)
West	0.9x	0.77		ĸ	0.66	X	9	4.68	X		0.63	X	0.7	=	19.1	(80)
West	0.9x	0.77		ĸ	0.99	X	9	4.68	X		0.63	x	0.7	=	28.64	(80)
West	0.9x	0.77	:	ĸ	2.43	X	9	4.68	x		0.63	x	0.7	=	70.31	(80)
West	0.9x	0.77		ĸ	1.33	X	g	4.68	X		0.63	x	0.7	=	38.48	(80)
West	0.9x	0.77	:	ĸ	1.46	X	7	'3.59	x		0.63	x	0.7	=	32.84	(80)
West	0.9x	0.77		ĸ	0.66	X	7	3.59	x		0.63	x	0.7	=	14.84	(80)
West	0.9x	0.77		ĸ	0.99	X	7	3.59	x		0.63	X	0.7	=	22.26	(80)
West	0.9x	0.77	:	ĸ	2.43	X	7	3.59	X		0.63	x	0.7	=	54.65	(80)
West	0.9x	0.77		ĸ	1.33	X	7	3.59	x		0.63	X	0.7	=	29.91	(80)
West	0.9x	0.77		ĸ	1.46	X	4	5.59	X		0.63	x	0.7	=	20.34	(80)
West	0.9x	0.77		ĸ	0.66	X	4	5.59	X		0.63	x	0.7	=	9.2	(80)
West	0.9x	0.77	:	ĸ	0.99	X	4	5.59	X		0.63	x	0.7	=	13.79	(80)
West	0.9x	0.77		ĸ	2.43	X	4	5.59	X		0.63	x	0.7	=	33.86	(80)
West	0.9x	0.77		ĸ	1.33	X	4	5.59	x		0.63	x	0.7	=	18.53	(80)
West	0.9x	0.77		ĸ	1.46	X	2	4.49	X		0.63	x	0.7	=	10.93	(80)
West	0.9x	0.77		ĸ	0.66	X	2	4.49	X		0.63	x	0.7	=	4.94	(80)
West	0.9x	0.77		ĸ	0.99	X	2	4.49	X		0.63	x	0.7	=	7.41	(80)
West	0.9x	0.77		ĸ	2.43	X	2	4.49	X		0.63	x	0.7	=	18.19	(80)
West	0.9x	0.77		ĸ	1.33	X	2	4.49	X		0.63	x	0.7	=	9.95	(80)
West	0.9x	0.77		ĸ	1.46	X	1	6.15	X		0.63	x	0.7	=	7.21	(80)
West	0.9x	0.77		ĸ	0.66	X	1	6.15	X		0.63	x	0.7	=	3.26	(80)
West	0.9x	0.77		ĸ	0.99	X	1	6.15	x		0.63	x	0.7	=	4.89	(80)
West	0.9x	0.77	:	ĸ	2.43	x	1	6.15	x		0.63	×	0.7	=	11.99	(80)
West	0.9x	0.77		ĸ	1.33	X	1	6.15	X		0.63	x	0.7	=	6.56	(80)
						_	•									
				_	for each mon	_		r			ım(74)m .				7	
(83)m=	78.94	153.94	254.58	ㅗ	376.42 468.1		482.7	458.07	388	.55	297.45	182.7	4 98.28	65.04		(83)
_				_	(84)m = (73) n		` '								7	
(84)m=	726.07	796.28	873.46		958.94 1013.3	31	994.65	950.71	890	.04	819.99	741.8	698	695.55		(84)
7. Me	an inter	nal temp	erature	e (I	heating seaso	on)										
Temp	erature	during h	eating	рє	eriods in the li	ving	g area t	from Tab	ole 9,	, Th′	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains fo	· liv	ving area, h1,	m (:	see Ta	ble 9a)								
	Jan	Feb	Mar	\perp	Apr Ma	у	Jun	Jul	A	ug	Sep	Oc	t Nov	Dec	_	
(86)m=	0.94	0.92	0.89		0.83 0.73		0.59	0.46	0.9	5	0.69	0.85	0.92	0.95		(86)
	_		_			_	_		_	-		_	_			

Moon	intorno	l tompor	oturo in	livina or	oo T1 (fa	allow oto	no 2 to 7	7 in Tabl	o ()o)					
Г					<u> </u>	i	ps 3 to 7	1	 	40.00	40.00	40.00		(87)
(87)m= [18.71 erature	18.94	19.37	19.93 periods in	20.42	20.76 dwelling	20.91 from Ta	20.88 hle 9 Ti	20.62 h2 (°C)	19.99	19.26	18.66		(67)
(88)m=	19.89	19.89	19.89	19.9	19.9	19.91	19.91	19.91	19.91	19.9	19.9	19.9		(88)
` ′ L						<u> </u>	e Table		10.01	10.0	10.0	10.0		(==)
(89)m=	0.93	0.91	0.88	0.8	0.68	0.52	0.37	0.41	0.63	0.82	0.91	0.94		(89)
` ′ L						Į	l		l	Į				, ,
г						- ` `	·		7 in Tabl		17.00	40.0		(00)
(90)m=	16.87	17.2	17.81	18.6	19.26	19.7	19.85	19.83	19.54	18.7	17.66	16.8		(90)
									I	LA = LIVIN	g area ÷ (4	+) =	0.17	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	17.19	17.5	18.08	18.83	19.46	19.88	20.03	20.01	19.72	18.93	17.94	17.12		(92)
Apply	adjustn	nent to tl	he mean	interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	17.04	17.35	17.93	18.68	19.31	19.73	19.88	19.86	19.57	18.78	17.79	16.97		(93)
8. Spa	ice hea	ting requ	uirement											
		mean int				ed at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
L Utilisa		tor for g		· ·	iviay	<u> </u>	<u> </u>	, lug	СОР		1101			
(94)m=	0.9	0.88	0.84	0.76	0.65	0.5	0.36	0.4	0.61	0.79	0.87	0.91		(94)
` ′ L		hmGm									<u> </u>			` ,
(95)m=	654.97	700.37	731.36	730.7	660.56	501.48	344.75	357.35	496.1	583.54	610.26	632.66		(95)
L		age exte												
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
L		for mea	an intern	al tempe	L erature	lm W =	=[(39)m :	r [(93)m	L – (96)m	L	l			
г		1411.69		1097.9	853.43	571.25	365.59	385.05	611.02	916.66	1202.14	1440.43		(97)
Space	heatin	a require	ement fo	r each n	l nonth. k\	I Wh/mont	th = 0.02	1 24 x [(97]	ı)m – (95	l)ml x (4 ⁻	1 1)m			
(98)m=	588.69	478.01	418.41	264.39	143.5	0	0	0	0	247.84	426.15	600.99		
` ′ [<u> </u>	l	Tota	l per year	l (kWh/vear		8)1 59 12 =	3167.97	(98)
Cnass	hootin	a roauir	amant in	Id Mb/m3	2/voor				, , , , , , , , , , , , , , , , , , , ,	()	, (-			=
•		g require											34.52	(99)
9a. Ene	ergy rec	quiremer	nts – Indi	vidual h	eating sy	ystems i	ncluding	micro-C	CHP)					
-	heatir	_			./							ı		7(004)
	•					mentary	system		(004)				0	(201)
	-	ace hea		•	` '			(202) = 1 -	- (201) =				1	(202)
		tal heatii	_	-				(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ncy of r	main spa	ace heat	ing syste	em 1								93.2	(206)
Efficie	ncy of s	seconda	ry/suppl	ementar	y heating	g system	ո, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space	heatin	g require	ement (c	alculate	d above))				-	_	-		
	588.69	478.01	418.41	264.39	143.5	0	0	0	0	247.84	426.15	600.99		
(211)m	= {[(98)m x (20	4)] } x 1	00 ÷ (20)6)									(211)
•	631.65	512.88	448.93	283.68	153.97	0	0	0	0	265.92	457.24	644.84		
L						•		Tota	l (kWh/yea	ar) =Sum(2	211),15,1012	=	3399.11	(211)

(215)m= 0 0	00 ÷ (20)	0	0	0	0	0	0	0	0	0		
					<u> </u>	Tota	l (kWh/yea	ar) =Sum(2	2 <mark>15)</mark> _{15,101}		0	(215)
Water heating												_
Output from water heat 203.79 179.53	er (calcu	ulated al	oove) 164.97	147.11	141	155.11	154.96	174.8	185.19	198.79		
Efficiency of water heat		100.00	104.57	147.11	''	100.11	104.00	174.0	100.10	130.73	80.1	(216
(217)m= 87.78 87.6	87.18	86.31	84.75	80.1	80.1	80.1	80.1	86.05	87.27	87.88		(217
Fuel for water heating,						!		<u>. </u>			l	
(219)m = (64) m x 100 (219)m = 232.15 204.94	÷ (217) 216.03	m 195.29	194.67	183.66	176.04	193.65	193.46	203.14	212.2	226.2]	
(210)111 202.10 201.01	210.00	100.20	10 1.01	100.00	170.01	L	I = Sum(2	<u> </u>		1 220.2	2431.42	(219)
Annual totals								k'	Wh/yea	r	kWh/yea	
Space heating fuel use	d, main	system	1								3399.11	
Water heating fuel used	d										2431.42	
Electricity for pumps, fa	ans and	electric	keep-ho	t								
central heating pump:										30		(230
boiler with a fan-assist	ted flue									45		(230
Total electricity for the a	above, k	«Wh/yea	r			sum	of (230a).	(230g) =	:		75	(231)
- 1												
Electricity for lighting											398.15	(232)
Electricity for lighting Electricity generated by	/ PVs										398.15 -1706.06	(232)
,		ses (211)(221)	+ (231)	+ (232)	(237b)	=					╡
Electricity generated by	for all us	` .	, , ,	+ (231)	+ (232)	(237b)	=				-1706.06	(233)
Electricity generated by	for all us	` .	, , ,			(237b)	=	Fuel P	Price		-1706.06 4597.62	(233)
Electricity generated by	for all us	` .	, , ,	Fu		(237b)	=	Fuel P (Table			-1706.06	(233)
Electricity generated by	for all us	ating sy	, , ,	Fu kW	el	(237b)	=		12)	x 0.01 =	-1706.06 4597.62 Fuel Cost	(233)
Electricity generated by Total delivered energy 1 10a. Fuel costs - indiv	for all us idual he	ating sy	, , ,	Fu kW	el /h/year	(237b)	=	(Table	12)	x 0.01 = x 0.01 =	-1706.06 4597.62 Fuel Cost £/year	(233)
Electricity generated by Total delivered energy i 10a. Fuel costs - indiv Space heating - main s Space heating - main s	for all us idual he system 1 system 2	ating sy	, , ,	Fu kW (21:	el /h/year	(237b)	=	(Table	12)		-1706.06 4597.62 Fuel Cost £/year	(233)
Electricity generated by Total delivered energy 10a. Fuel costs - indiv Space heating - main s Space heating - main s Space heating - second	for all us idual he system 1 system 2 dary	ating sy	, , ,	Fu kW (21:	el /h/year 1) x 3) x 5) x	(237b)	=	(Table	12)	x 0.01 =	-1706.06 4597.62 Fuel Cost £/year 118.29	(233)
Electricity generated by Total delivered energy i 10a. Fuel costs - indiv Space heating - main s	for all us ridual he system 1 system 2 dary ner fuel)	eating sy	, , ,	Fu kW (21:	el /h/year 1) x 3) x 5) x	(237b)	=	(Table 3.4 0 13.	12)	x 0.01 = x 0.01 =	-1706.06 4597.62 Fuel Cost £/year 118.29 0	(233) (338) (240) (241) (242)
Electricity generated by Total delivered energy 10a. Fuel costs - indiv Space heating - main s Space heating - main s Space heating - second Water heating cost (oth Pumps, fans and electr (if off-peak tariff, list each	for all us ridual he system 1 system 2 dary her fuel) ric keep-	ating sy	stems:	Fu kW (21) (21) (21) (23) eparately	el /h/year 1) x 3) x 5) x 9) 1)			(Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	12) 18 19 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89	(240) (241) (242) (247)
Electricity generated by Total delivered energy 10a. Fuel costs - indiv Space heating - main s Space heating - main s Space heating - second Water heating cost (oth Pumps, fans and electr	for all us ridual he system 1 system 2 dary her fuel) ric keep-	ating sy	stems:	Fu kW (21: (21: (21: (21:	el /h/year 1) x 3) x 5) x 9) 1)			(Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	12) 18 19 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89	(240) (241) (242) (247)
Electricity generated by Total delivered energy 10a. Fuel costs - indiv Space heating - main s Space heating - main s Space heating - second Water heating cost (oth Pumps, fans and electr (if off-peak tariff, list eac	for all us ridual he system 1 system 2 dary her fuel) ric keep- ch of (23	eating sy hot 30a) to (stems:	Fu kW (21) (21) (21) (23) eparately	el /h/year 1) x 3) x 5) x 9) 1)			(Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12) 18 19 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89 Table 12a	(240) (241) (242) (247) (249)
Electricity generated by Total delivered energy in 10a. Fuel costs - indiv Space heating - main is Space heating - main is Space heating - second Water heating cost (oth Pumps, fans and electric (if off-peak tariff, list eace Energy for lighting	for all us ridual he system 1 system 2 dary her fuel) ric keep- ch of (23	eating sy hot 30a) to (stems:	Fu kW (21 (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1)	licable a		(Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12) 18 19 18 19 19 ce accord	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89 Fable 12a 52.52	(240 (241 (242 (247 (249 (250
Electricity generated by Total delivered energy of 10a. Fuel costs - individual Space heating - main so Space heating - main so Space heating - second Water heating cost (oth Pumps, fans and electroit (if off-peak tariff, list each Energy for lighting)	for all us idual he system 1 system 2 dary ner fuel) ric keep- ch of (23 arges (Ta	hot 30a) to (stems:	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1) y as app	licable a		(Table 3.4 13. 13. 14 15 16 17 18 18 18 18 18 18 18 18 18	12) 18 19 18 19 19 ce accord	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89 Table 12a 52.52 120	(233 (338 (240 (241 (242 (247 (249 (250 (251
Electricity generated by Total delivered energy in 10a. Fuel costs - individual Space heating - main sets and electricity off-peak tariff, list each energy for lighting Additional standing challing and electricity of the set of the	for all us idual he system 1 system 2 dary ner fuel) ric keep- ch of (23 arges (Ta	hot 30a) to (230g) se	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1) y as app of (233) to	o (235) x)		(Table 3.4 13. 13. 14 15 16 17 18 18 18 18 18 18 18 18 18	12) 18 19 18 19 19 ce accord	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to 7 x 0.01 =	-1706.06 4597.62 Fuel Cost £/year 118.29 0 0 84.61 9.89 Table 12a 52.52 120	(233 (338 (240 (241 (242 (247 (249 (250 (251

SAP rating (Section 12)	(257)
12a. CO2 emissions – Individual heating systems including micro-CHP	
Energy Emission factor Emission kWh/year kg CO2/kWh kg CO2/y	_
Space heating (main system 1) (211) x 0.216 = 734.21	(261)
Space heating (secondary) (215) x 0.519 = 0	(263)
Water heating (219) x 0.216 = 525.19	(264)
Space and water heating (261) + (262) + (263) + (264) = 1259.39	(265)
Electricity for pumps, fans and electric keep-hot (231) x 0.519 = 38.93	(267)
Electricity for lighting (232) x 0.519 = 206.64	(268)
Energy saving/generation technologies Item 1 0.519 = -885.45	(269)
Total CO2, kg/year sum of (265)(271) = 619.52	(272)
CO2 emissions per m^2 (272) ÷ (4) = 6.75	(273)
EI rating (section 14)	(274)
13a. Primary Energy	
Energy Primary P. Energ kWh/year factor kWh/year	•
Space heating (main system 1) (211) x 1.22 = 4146.91	(261)
Space heating (secondary) (215) x 3.07 = 0	(263)
Energy for water heating (219) x 1.22 = 2966.33	(264)
Space and water heating (261) + (262) + (263) + (264) = 7113.25	(265)
Electricity for pumps, fans and electric keep-hot (231) x 3.07 = 230.25	(267)
Electricity for lighting $(232) \times 0 = 1222.33$	(268)
Energy saving/generation technologies Item 1 3.07 = -5237.6	(269)
'Total Primary Energy sum of (265)(271) = 3328.22	(272)

 $(272) \div (4) =$

Primary energy kWh/m²/year

(273)

36.26

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 5

Dwelling type: Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
3 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 218.07 (P1)

Transmission heat loss coefficient: 72.2

Summer heat loss coefficient: 290.32 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
West (W_115)	0	1
North (W_116)	0	1
East (W_117)	0	1
East (W_118)	0	1
West (W_119)	0	1
West (W_120)	0	1
East (W_121)	0	1
West (W_122)	0	1
West (W_123)	0	1
East (W_124)	0	1
North (W_125)	0	1
North (W 126)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
West (W_115)	0.85	0.9	1	0.76	(P8)
North (W_116)	0.85	0.9	1	0.76	(P8)
East (W_117)	0.85	0.9	1	0.76	(P8)
East (W_118)	0.85	0.9	1	0.76	(P8)
West (W_119)	0.85	0.9	1	0.76	(P8)
West (W_120)	0.85	0.9	1	0.76	(P8)
East (W_121)	0.85	0.9	1	0.76	(P8)
West (W_122)	0.85	0.9	1	0.76	(P8)
West (W_123)	0.85	0.9	1	0.76	(P8)
East (W_124)	0.85	0.9	1	0.76	(P8)
North (W_125)	0.85	0.9	1	0.76	(P8)
North (W_126)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation Area Flux g_ FF Shading Gains

SAP 2012 Overheating Assessment

						Total	494.48 (P3/P4)
North (W_126)	0.9 x	0.54	82.12	0.63	0.7	0.76	13.46
North (W_125)	0.9 x	2.21	82.12	0.63	0.7	0.76	55.11
East (W_124)	0.9 x	0.66	119.47	0.63	0.7	0.76	23.94
West (W_123)	0.9 x	1.33	119.47	0.63	0.7	0.76	48.25
West (W_122)	0.9 x	2.43	119.47	0.63	0.7	0.76	88.15
East (W_121)	0.9 x	0.86	119.47	0.63	0.7	0.76	31.2
West (W_120)	0.9 x	0.99	119.47	0.63	0.7	0.76	35.91
West (W_119)	0.9 x	0.66	119.47	0.63	0.7	0.76	23.94
East (W_118)	0.9 x	1.5	119.47	0.63	0.7	0.76	54.41
East (W_117)	0.9 x	1.48	119.47	0.63	0.7	0.76	53.69
North (W_116)	0.9 x	0.54	82.12	0.63	0.7	0.76	13.46
West (W_115)	0.9 x	1.46	119.47	0.63	0.7	0.76	52.96

Internal gains:

	June	July	August
Internal gains	508.95	489.63	498.49
Total summer gains	1034.98	984.12	921.96 (P5)
Summer gain/loss ratio	3.57	3.39	3.18 (P6)
Mean summer external temperature (East Anglia)	15.4	17.6	17.6
Thermal mass temperature increment	1.3	1.3	1.3
Threshold temperature	20.27	22.29	22.08 (P7)
Likelihood of high internal temperature	Not significant	Medium	Medium

Assessment of likelihood of high internal temperature: Medium