Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.58 *Printed on 29 November 2022 at 15:11:35*

Proiect Information:

Assessed By: Liam Mason (STRO033679) Building Type: Semi-detached House

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 93.48m²

Site Reference: Bell Road, Bottisham

Plot Reference: Plot 4

Address: Plot 4

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 16.87 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 6.87 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 48.4 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 43.0 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.19 (max. 0.30)	0.19 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof	0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	1.37 (max. 2.00)	1.40 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Database: (rev 508, product index 018403):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular)

Efficiency 89.8 % SEDBUK2009

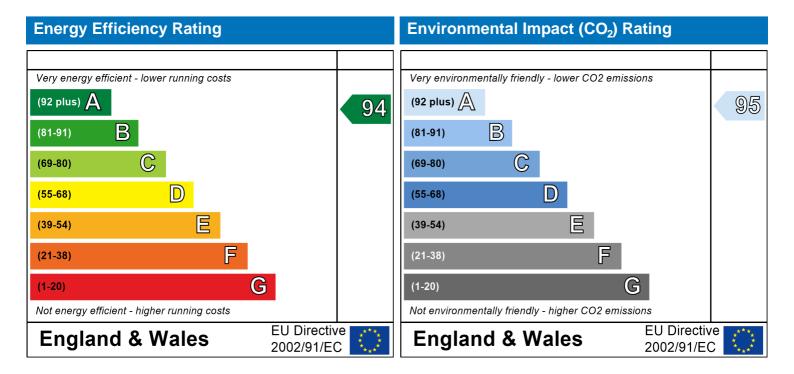
Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation			
Hot water Storage:	Measured cylinder loss: 1.3	•	
	Permitted by DBSCG: 2.30	kWh/day	oK
Primary pipework insulated:	Yes		ok
6 Controls			
Space heating controls	TTZC by plumbing and elec	ctrical services	oĸ
Hot water controls:	Cylinderstat		OK
	Independent timer for DHW	1	OK
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with le	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (East Anglia):		Slight	ок
Based on:		, and the second	
Overshading:		Average or unknown	
Windows facing: North		1.35m²	
Windows facing: South		0.86m²	
Windows facing: South		1.48m²	
Windows facing: South		1.4m²	
Windows facing: North		3.33m²	
Windows facing: North		0.99m²	
Windows facing: West		0.5m²	
Windows facing: West		0.5m ²	
Windows facing: North		1.46m²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller blind	
		Closed 100% of daylight hours	
10 Key features		0.44.14// 01/	
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

Predicted Energy Assessment


Plot 4

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Semi-detached House 03 November 2022 Liam Mason 93.48 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Address: Plot 4 England Located in: Region: East Anglia

UPRN:

03 November 2022 Date of assessment: 29 November 2022 Date of certificate: New dwelling design stage Assessment type:

New dwelling Transaction type: Tenure type: Unknown Related party disclosure: No related party Thermal Mass Parameter: Indicative Value Low

True Water use <= 125 litres/person/day:

508 PCDF Version:

Dwelling type: House Semi-detached Detachment:

2022 Year Completed:

Floor Location: Floor area:

46.74 m² 2.4 m Floor 0 Floor 1 46.74 m² 2.4 m

16.24 m² (fraction 0.174) Living area:

Front of dwelling faces: South

Openir	

Name:	Source:	Type:	Glazing:		Argon:	Frame:
D_12	Manufacturer	Solid				
W_97	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_98	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_99	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_100	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_101	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_102	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_103	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_104	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
W_105	Manufacturer	Windows	low-E, $En = 0.0$	5, soft coat	Yes	
Name:	Gap:	Frame Factor	r: g-value:	U-value:	Area:	No. of Openings:
D_12	mm	0	0	1.2	2.03	1
W_97	16mm or more	0.7	0.63	1.4	1.35	1
W_98	16mm or more	0.7	0.63	1.4	0.86	1
W_99	16mm or more	0.7	0.63	1.4	1.48	1
W_100	16mm or more	0.7	0.63	1.4	1.4	1
W_101	16mm or more	0.7	0.63	1.4	3.33	1
W_102	16mm or more	0.7	0.63	1.4	0.99	1
W_103	16mm or more	0.7	0.63	1.4	0.5	1
W_104	16mm or more	0.7	0.63	1.4	0.5	1
W_105	16mm or more	0.7	0.63	1.4	1.46	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D_12	Doors	Wall 1	South		2.03	1
W_97	Windows	Wall 1	North		1.35	1
W_98	Windows	Wall 1	South		0.86	1
W_99	Windows	Wall 1	South		1.48	1
W_100	Windows	Wall 1	South		1.4	1

Storey height:

SAP Input

W_101	Windows	Wall 1	North	3.33	1
W_102	Windows	Wall 1	North	0.99	1
W_103	Windows	Wall 1	West	0.5	1
W_104	Windows	Wall 1	West	0.5	1
W_105	Windows	Wall 1	North	1.46	1

Overshading: Average or unknown

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elemen	<u>its</u>						
Wall 1	99.4	13.9	85.5	0.19	0	False	N/A
Roof 1	46.74	0	46.74	0.11	0		N/A
Floor 1	46.74			0.11			N/A
Internal Elemen	ts						
INT FLOOR	<u>46.74</u>						N/A
Party Elements							
Party Wall	43.5						N/A
-							

Thermal bridges

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0744

Length	Psi-value		
10.51	0.3	E2	Other lintels (including other steel lintels)
7.89	0.04	E3	Sill
25.3	0.05	E4	Jamb
19.49	0.16	E5	Ground floor (normal)
19.49	0.07	E6	Intermediate floor within a dwelling
10.96	0.06	E10	Eaves (insulation at ceiling level)
10.43	0.24	E12	Gable (insulation at ceiling level)
10.2	0.09	E16	Corner (normal)
10.2	0.06	E18	Party wall between dwellings
0	0.3	E2	
0	0.04	E3	
0	0.05	E4	
0	0.16	E5	
0	0.07	E6	
0	0.06	E10	
0	0.24	E12	
0	0.09	E16	
0	-0.09	E17	
0	0.06	E18	
8.53	0	P2	Intermediate floor within a dwelling
0	0.16	P1	Ground floor
0	0.16	P1	
0	0	P2	
5.48	0.08	R4	Ridge (vaulted ceiling)
0	0.08	R4	

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of passive stacks: 0
Number of sides sheltered: 2

SAP Input

Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 508, product index 018403) Efficiency: Winter 80.1 % Summer: 90.8

Brand name: Vaillant Model: ecoFIT sustain 615

Model qualifier: VU 156/6-3 (H-GB)

(Regular boiler) Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=45°C

Room-sealed Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control by suitable arrangement of plumbing and electrical

services

Control code: 2110

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 210 litres

Cylinder insulation: Measured loss, 1.32kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 2 Tilt of collector: 45°

Overshading: None or very little Collector Orientation: South

Assess Zero Carbon Home: No

		User Details:							
Assessor Name:	Liam Mason	Stroma Nun	nhor:	STRO	033679				
Software Name:	Stroma FSAP 2012		Software Version: Versi						
Contware Hame.	Ottottia 1 O/ tt 2012	Property Address: Plot 4		7 010101	1. 1.0.0.00				
Address :	Plot 4	Troporty / taareee. Trot							
Overall dwelling dime	nsions:								
		Area(m²)	Av. Height(n	n)	Volume(m³))			
Ground floor		46.74 (1a) x	2.4	(2a) =	112.18	(3a)			
First floor		46.74 (1b) x	2.4	(2b) =	112.18	(3b)			
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+	(1n) 93.48 (4)							
Dwelling volume		(3a)+(3	b)+(3c)+(3d)+(3e)+	(3n) =	224.35	(5)			
2. Ventilation rate:									
	main second heating heatin		total		m³ per hou	r			
Number of chimneys	0 + 0	+ 0 =	0	x 40 =	0	(6a)			
Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)			
Number of intermittent fa	ns		2	x 10 =	20	(7a)			
Number of passive vents			0	x 10 =	0	(7b)			
Number of flueless gas fi	res		0	x 40 =	0	(7c)			
		•		A * I		<u> </u>			
Inditantian due to abiece	fl	· (70) · (7h) · (70)		-	anges per ho	_			
•	ys, flues and fans = (6a)+(6b) een carried out or is intended, prod		20 from (9) to (16)	÷ (5) =	0.09	(8)			
Number of storeys in the		<i>'''</i>	() ()	Г	0	(9)			
Additional infiltration			[4	(9)-1]x0.1 =	0	(10)			
Structural infiltration: 0.	25 for steel or timber frame	or 0.35 for masonry cons	truction	Ī	0	(11)			
if both types of wall are pr deducting areas of openir	resent, use the value corresponding	g to the greater wall area (after		_		_			
=	loor, enter 0.2 (unsealed) or	0.1 (sealed), else enter 0)	Γ	0	(12)			
If no draught lobby, ent		, , ,		Ì	0	(13)			
Percentage of windows	s and doors draught stripped	I		Ī	0	(14)			
Window infiltration	.	0.25 - [0.2 x (14) ÷	100] =	Ī	0	(15)			
Infiltration rate		(8) + (10) + (11) +	(12) + (13) + (15) =	Ī	0	(16)			
Air permeability value,	q50, expressed in cubic me	tres per hour per square r	netre of envelo	pe area	5	(17)			
	ity value, then (18) = [(17) ÷ 20			Ī	0.34	(18)			
Air permeability value applie	s if a pressurisation test has been	done or a degree air permeabilit	y is being used	L		_			
Number of sides sheltere	d			[2	(19)			
Shelter factor		(20) = 1 - [0.075 x]	(19)] =	[0.85	(20)			
Infiltration rate incorporat	ing shelter factor	(21) = (18) x (20) =	:	[0.29	(21)			
Infiltration rate modified for	or monthly wind speed								
	or monthly wind opeca								
	Mar Apr May Jui	n Jul Aug Sep	Oct No	v Dec					

4.3

3.8

3.8

3.7

4.3

4.5

4.7

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
_ [0.37	0.36	0.35	0.32	0.31	0.27	0.27	0.27	0.29	0.31	0.32	0.34		
		<i>ctive air e</i> al ventila	•	rate for t	he appli	cable ca	se						0	(23a)
				endix N, (2	(3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
If bala	nced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				0	(23c)
a) If I	balance	ed mecha	anical ve	entilation	with he	at recov	ery (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	ed mecha	anical ve	entilation	without	heat red	covery (I	MV) (24b	o)m = (22	2b)m + (2	23b)		-	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,				ntilation o	•	•								
r	` ,		<u> </u>	· ` `	ŕ	ŕ	· `		ŕ	.5 × (23b			1	(0.4-)
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous $m = (221)$						0.51				
(24d)m=		0.56	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	ld) in bo	x (25)				•	
(25)m=	0.57	0.56	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)
2 40														
э. пеа	at losse:	s and he	eat loss	paramet	er:									
ELEN		s and he Gros area	SS	parameto Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/I	<)	k-value kJ/m²-l		A X k kJ/K
		Gros	SS	Openin	gs		m²				<) 			
ELEN Doors		Gros area	SS	Openin	gs	A ,r	m² x	W/m2	2K =	(W/I	<) 			kJ/K
ELEM Doors Window	IENT	Gros area	SS	Openin	gs	A ,r	m ² x x1	W/m2	2K = 	(W/I 2.436	<) 			kJ/K (26)
Doors Window Window	IENT ws Type	Gros area e 1	SS	Openin	gs	A ,r 2.03	m² x x1 x1	W/m2 1.2 /[1/(1.4)+	2K = 0.04] = 0.04] =	(W/I 2.436 1.79	<) 			kJ/K (26) (27)
Doors Window Window Window	IENT ws Type ws Type	Gros area e 1 e 2 e 3	SS	Openin	gs	A ,r 2.03 1.35	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14	<)			kJ/K (26) (27) (27)
Doors Window Window Window Window	IENT ws Type ws Type ws Type	Gros area 1 2 2 3 4 4	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14 1.96	<) 			kJ/K (26) (27) (27) (27)
Doors Window Window Window Window Window	NS Type NS Type NS Type NS Type	Gros area 1 2 2 3 3 4 4 5 5	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48	m ²	W/m ² 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] =	(W/I 2.436 1.79 1.14 1.96 1.86	<)			kJ/K (26) (27) (27) (27) (27)
Doors Window Window Window Window Window Window	WS Type WS Type WS Type WS Type WS Type	Gros area 1 2 3 4 4 5 6 6	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41	<)			kJ/K (26) (27) (27) (27) (27) (27)
Doors Window Window Window Window Window Window Window Window	WS Type WS Type WS Type WS Type WS Type	Gros area 4 4 5 5 6 6 7	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33	m ²	W/m ² 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27)
Doors Window	WS Type	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	2.436 1.79 1.14 1.96 1.86 4.41 1.31	<)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
Doors Window	WS Type	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8	SS	Openin	gs	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window	WS Type	Gros area 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8	ss (m²)	Openin	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Floor	WS Type	Gros area 1 2 2 3 3 4 4 5 5 6 6 7 4 8 8 9 9	ss (m²)	Openin	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roof	WS Type	Gros area 4 1 4 2 4 3 4 4 5 5 6 6 7 7 8 8 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roof	WS Type	Gros area 1 1 2 2 3 3 4 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 1.46 46.74 85.5	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Window Roor Walls Roof Total a	WS Type	Gros area 1 1 2 2 3 3 4 4 4 5 5 6 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ss (m²)	Openin m	gs ₁ ²	A ,r 2.03 1.35 0.86 1.48 1.4 3.33 0.99 0.5 0.5 46.74 85.5 46.74	m ²	W/m2 1.2 /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.11 0.19 0.11	EK = 0.04] = 0	(W/I 2.436 1.79 1.14 1.96 1.86 4.41 1.31 0.66 0.66 1.94 5.1414 16.25 5.14				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

(26)...(30) + (32) =

Fabric heat loss, $W/K = S (A \times U)$

44.7

(33)

Heat capacity Cr	$m = S(A \times k)$)					((28)	.(30) + (32	2) + (32a).	(32e) =	20098.38	(34)
Thermal mass p	,		÷ TFA) ir	n kJ/m²K			Indicative Value: Low 100					(35)
For design assessm	nents where the	details of the	,			ecisely the	e indicative	values of	TMP in Ta	able 1f	100	(/
Thermal bridges	s : S (L x Y)	calculated	using Ap	pendix l	K						14.35	(36)
if details of thermal back. Total fabric heat		t known (36)	= 0.05 x (3	11)			(33) +	(36) =			59.05	(37)
Ventilation heat	/entilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$											
Jan	Feb Ma		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 42.02	41.82 41.6		40.57	39.79	39.79	39.65	40.09	40.57	40.91	41.27		(38)
Heat transfer co	Heat transfer coefficient, W/K (39)m = (37) + (38)m											
(39)m= 101.06 1	100.87 100.6	88 99.79	99.62	98.84	98.84	98.7	99.14	99.62	99.96	100.31		
Heat loss param	neter (HLP),	W/m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	99.79	(39)
(40)m= 1.08	1.08 1.08	3 1.07	1.07	1.06	1.06	1.06	1.06	1.07	1.07	1.07		_
Number of days	in month (T	able 1a)					,	Average =	Sum(40) _{1.}	12 /12=	1.07	(40)
Jan	Feb Ma	ır Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28 31	30	31	30	31	31	30	31	30	31		(41)
4. Water heatin	ng energy re	quirement:								kWh/ye	ear:	
Assumed occupa	ancv. N										İ	
if TFA > 13.9, if TFA £ 13.9,	N = 1 + 1.70	6 x [1 - exp	0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		67		(42)
·	N = 1 + 1.70 N = 1 hot water us	sage in litre	` es per da	ay Vd,av	erage =	(25 x N)	+ 36		9)	67		(42)
if TFA £ 13.9, Annual average	N = 1 + 1.70 N = 1 hot water us average hot wa	sage in litre ter usage by	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed	(25 x N)	+ 36		9)			, ,
if TFA £ 13.9, Annual average Reduce the annual a	N = 1 + 1.70 N = 1 hot water us average hot wa	sage in litro ter usage by per day (all v	es per da 5% if the d	ay Vd,av Iwelling is	erage = designed	(25 x N)	+ 36		9)			, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma	sage in litro ter usage by per day (all v	es per da 5% if the d vater use, l	ay Vd,av dwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	7.62		, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma	sage in litre ter usage by per day (all v ar Apr r each month	es per da 5% if the d vater use, l	ay Vd,av dwelling is hot and co	erage = designed i	(25 x N) to achieve	+ 36 a water us	se target o	9) 97	7.62		, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li	N = 1 + 1.70 $N = 1$ hot water us average hot waters per person Feb Malitres per day for 103.48 99.5	sage in litro ter usage by per day (all v ar Apr r each month	es per da 5% if the d vater use, I May Vd,m = fa 91.77	ay Vd,av fwelling is that and co Jun ctor from	erage = designed in state of the state of th	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Su	9) Nov 103.48 m(44) ₁₁₂ =	Dec 107.38	1171.47	, ,
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1	N = 1 + 1.70 $N = 1$ hot water us average hot waters per person Feb Malitres per day for 103.48 99.5	sage in litro ter usage by per day (all v ar Apr r each month 7 95.67 calculated m	es per da 5% if the d vater use, I May Vd,m = fa 91.77	ay Vd,av fwelling is that and co Jun ctor from	erage = designed in state of the state of th	(25 x N) to achieve Aug (43) 91.77	+ 36 a water us Sep 95.67	Oct 99.57 Total = Su	9) Nov 103.48 m(44) ₁₁₂ =	Dec 107.38	1171.47	(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot wateres per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7	sage in litre ter usage by per day (all v ar Apr r each month 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May $Vd,m = fa$ 91.77 $onthly = 4$.	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Su 130.1	9) Nov 103.48 m(44)12 = ables 1b, 1	.62 Dec 107.38 c, 1d) 154.22	1171.47	(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot waters per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person	sage in litre ter usage by per day (all var Aprar each month) 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May Vd,m = fa 91.77 onthly = 4. 120.23	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r 103.75	erage = designed in	(25 x N) to achieve Aug (43) 91.77 97m / 3600 110.32 boxes (46)	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ =	.62 Dec 107.38		(43) (44) (45)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of hot (45)m= 159.25 1 If instantaneous wate (46)m= 23.89	N = 1 + 1.70 N = 1 hot water usaverage hot wateres per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5	sage in litre ter usage by per day (all var Aprar each month) 7 95.67 calculated m 72 125.3	es per da 5% if the ovater use, I May $Vd,m = fa$ 91.77 $onthly = 4$.	ay Vd,av Iwelling is that and co Jun ctor from 87.86 190 x Vd,r	erage = designed and designed a	(25 x N) to achieve Aug (43) 91.77 9Tm / 3600 110.32	+ 36 a water us Sep 95.67 0 kWh/mon 111.64	Oct 99.57 Total = Su 130.1	9) 97 Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02	.62 Dec 107.38 c, 1d) 154.22		(43)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma ditres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 OSS:	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated m 72 125.3 pint of use (note) 6 18.8	es per da 5% if the ovater use, I May $Vd,m = fa$ 91.77 onthly = 4. 120.23 o hot water 18.03	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage),	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75	Oct 99.57 Fotal = Su 130.1 Fotal = Su 19.52	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of hot (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s	N = 1 + 1.70 N = 1 hot water use average hot water es per person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at per 20.89 21.5 oss: (litres) inclurating and no stored hot water used hot water estimates and no stored hot water estimates and no	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not 18.8) ding any series tank in dy	es per da 5% if the ovater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage), 15.56 /WHRS	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45) (46)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 OSS: (litres) inclurating and no stored hot wooss:	sage in litro ter usage by per day (all v ar Apr r each month 7 95.67 calculated m 72 125.3 pint of use (n 6 18.8 ding any s o tank in dv ater (this in	es per da 5% if the o vater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e ncludes i	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,i 103.75 storage), 15.56 /WHRS Inter 110 Instantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	.62 Dec 107.38		(43) (44) (45) (46)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 litt Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s Water storage lo	N = 1 + 1.70 N = 1 hot water us average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 oss: (litres) inclurating and no stored hot wors: rer's declare	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not) 6 18.8 ding any say tank in dwater (this in decorption)	es per da 5% if the o vater use, I May Vd,m = fa 91.77 onthly = 4. 120.23 o hot water 18.03 olar or W velling, e ncludes i	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,i 103.75 storage), 15.56 /WHRS Inter 110 Instantar	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/more 111.64 16.75 ame vess	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3	Dec 107.38 c, 1d) 154.22 23.13		(43) (44) (45) (46) (47)
if TFA £ 13.9, Annual average Reduce the annual a not more that 125 liti Jan Hot water usage in li (44)m= 107.38 1 Energy content of ho (45)m= 159.25 1 If instantaneous wate (46)m= 23.89 Water storage lo Storage volume If community hea Otherwise if no s Water storage lo a) If manufactur	N = 1 + 1.76 N = 1 hot water use average hot water sper person Feb Ma litres per day for 103.48 99.5 ot water used - 139.28 143.7 ter heating at person 20.89 21.5 oss: (litres) inclurating and no stored hot wooss: rer's declared to mater storal in water storal	sage in litre ter usage by per day (all var Apr reach month) 7 95.67 calculated may 125.3 pint of use (not 18.8) ding any sate tank in dwater (this in dwater (this in decay) ge, kWh/y	es per da 5% if the ovater use, I May $Vd,m = fa$ 91.77 onthly = 4. 120.23 o hot water 18.03 olar or Welling, encludes i or is known ear	ay Vd,av Iwelling is hot and co Jun ctor from 87.86 190 x Vd,r 103.75 r storage), 15.56 IWHRS enter 110 nstantar wn (kWh	erage = designed in designed i	(25 x N) to achieve Aug (43) 91.77 07m / 3600 110.32 boxes (46) 16.55 within sa (47)	+ 36 a water us Sep 95.67 0 kWh/mor 111.64 16.75 ame vess ers) ente	99.57 Total = Sunth (see Tail 130.1 Total = Sunth (see Tail 130.1) Total = Sunth (see Tail 130.1)	9) Nov 103.48 m(44) ₁₁₂ = ables 1b, 1 142.02 m(45) ₁₁₂ = 21.3 47)	.62 Dec 107.38 c, 1d) 154.22 23.13 210		(43) (44) (45) (46) (47)

Hot water storage loss factor from Table 2 (kWh/litre/day)			0	(51)
If community heating see section 4.3				_
Volume factor from Table 2a			0	(52)
Temperature factor from Table 2b			0	(53)
Energy lost from water storage, kWh/year	(47) x (51) x (52) x (5	53) =	0	(54)
Enter (50) or (54) in (55)			0.71	(55)
Water storage loss calculated for each month	$((56)m = (55) \times (41)r$	n		
(56)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57)m = (56)	m where (H11) is	from Append	lix H
(57)m= 22.1 19.96 22.1 21.38 22.1 21.38 22.1	22.1 21.38	22.1 21.38	22.1	(57)
Primary circuit loss (annual) from Table 3			0	(58)
Primary circuit loss calculated for each month (59) m = $(58) \div$	365 × (41)m			
(modified by factor from Table H5 if there is solar water hea	` '	thermostat)		
(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26	23.26 22.51	23.26 22.51	23.26	(59)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (4	1)m			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 0	0 0	0	(61)
				l · · ·
Total heat required for water heating calculated for each mon		<u> </u>	`	(62)
(62)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.6		175.46 185.9		` ′
Solar DHW input calculated using Appendix G or Appendix H (negative quar		r contribution to w	ater heating)	
(add additional lines if FGHRS and/or WWHRS applies, see	'i '' '		+	1 (00)
(63)m= 0 0 0 0 0 0	0 0	0 0	0	(63)
Output from water heater				1
(64)m= 204.61 180.25 189.08 169.2 165.59 147.65 141.65	155.68 155.53	175.46 185.9	2 199.58	
` '	100.00 100.00	173.40 103.9	2 199.36	
		ater heater (annua		2070.05 (64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa	ater heater (annua	l) ₁₁₂	
	Output from wa m + (61)m] + 0.8 x	ater heater (annua	l) ₁₁₂ m + (59)m	
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m=	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a):	Output from wa m + (61)m] + 0.8 x 72.97 72.24	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	Output from wa m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot wa	1 (46)m + (57) 79.55 82.34 82.34 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm	ater heater (annual) (2 [(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h	(65)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23 160.23	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23	ater heater (annual [(46)m + (57) 79.55 82.34 ater is from co	m + (59)m 87.57 mmunity h	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99	(46)m + (57) 79.55 82.34 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	[(65) neating
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 13a), also see Table	(46)m + (57) 79.55 82.34	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the stabolic gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 1	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72 a), also see Table	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the standard form of the sta	Output from warm + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot warm Aug Sep 3 160.23 160.23 also see Table 5 29.05 38.99 .13a), also see Table 4 270.14 279.72 a), also see Table	oter heater (annual file) [(46)m + (57)	m + (59)m 87.57 mmunity h Dec 3 160.23	(65) neating (66) (67) (68)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	Section Color	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.25 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from warm + (61)m] + 0.8 x 72.97	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02	(65) neating (66) (67) (68) (69)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45 (65)m= 89.24 79.09 84.08 76.78 76.26 69.61 68.29 include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 160.23 160.2	Output from was m + (61)m] + 0.8 x 72.97 72.24 e dwelling or hot was also see Table 5 29.05 38.99 13a), also see Table 5 29.05 38.99 13a), also see Table 53.69 53.69 3 3 3	oter heater (annual [(46)m + (57)] 79.55 82.34 atter is from co Oct Nov 160.23 160.2 49.51 57.79 ole 5 300.1 325.8 5 53.69 53.69	m + (59)m 87.57 mmunity h Dec 3 160.23 61.6 3 350.02 53.69 3	(65) neating (66) (67) (68) (69)

Total i	nternal	gains =					(66))m + (67)m	n + (68	3)m +	(69)m + (7	70)m +	(71)m + (72)	m		
(73)m=	656.15	651	626.8	589.53	551.39) 5	17.57	498.13	507	.37	529.14	566.63	608.08	639.42]	(73)
6. So	lar gains	:														
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.																
Orientation: Access Factor Area Flux g_ FF Gains Table 6d m² Table 6a Table 6b Table 6c (W)																
	 	able 6d					ı aı	bie 6a		16	adie 6b	_	i able 6c		(W)	
North	0.9x	0.77	X	1.	35	X	1	0.63	X		0.63	×	0.7	=	4.39	(74)
North	0.9x	0.77	X	3.	33	X	1	0.63	X		0.63	X	0.7	=	10.82	(74)
North	0.9x	0.77	Х	0.	99	X	1	0.63	X		0.63	X	0.7	=	3.22	(74)
North	0.9x	0.77	X	1.	46	X	1	0.63	X		0.63	×	0.7	=	4.74	(74)
North	0.9x	0.77	X	1.	35	X	2	20.32	X		0.63	×	0.7	=	8.38	(74)
North	0.9x	0.77	X	3.	33	X	2	20.32	X		0.63	X	0.7	=	20.68	(74)
North	0.9x	0.77	X	0.	99	X	2	20.32	X		0.63	×	0.7	=	6.15	(74)
North	0.9x	0.77	X	1.	46	X	2	20.32	X		0.63	X	0.7	=	9.07	(74)
North	0.9x	0.77	X	1.	35	X	3	34.53	X		0.63	X	0.7	=	14.25	(74)
North	0.9x	0.77	X	3.	33	X	3	34.53	X		0.63	X	0.7	=	35.14	(74)
North	0.9x	0.77	X	0.	99	X	3	34.53	X		0.63	X	0.7	=	10.45	(74)
North	0.9x	0.77	X	1.	46	X	3	34.53	X		0.63	×	0.7	=	15.41	(74)
North	0.9x	0.77	X	1.	35	X	5	55.46	X		0.63	X	0.7	=	22.88	(74)
North	0.9x	0.77	X	3.	33	X	5	55.46	X		0.63	X	0.7	=	56.45	(74)
North	0.9x	0.77	X	0.	99	X	5	55.46	X		0.63	X	0.7	=	16.78	(74)
North	0.9x	0.77	X	1.	46	X	5	55.46	X		0.63	X	0.7	=	24.75	(74)
North	0.9x	0.77	X	1.	35	X	7	4.72	X		0.63	X	0.7	=	30.83	(74)
North	0.9x	0.77	X	3.	33	X	7	4.72	X		0.63	X	0.7	=	76.04	(74)
North	0.9x	0.77	X	0.	99	X	7	74.72	X		0.63	X	0.7	=	22.61	(74)
North	0.9x	0.77	X	1.	46	X	7	4.72	X		0.63	X	0.7	=	33.34	(74)
North	0.9x	0.77	X	1.	35	X	7	79.99	X		0.63	X	0.7	=	33	(74)
North	0.9x	0.77	X	3.	33	X	7	79.99	X		0.63	X	0.7	=	81.4	(74)
North	0.9x	0.77	X	0.	99	X	7	79.99	X		0.63	X	0.7	=	24.2	(74)
North	0.9x	0.77	X	1.	46	X	7	79.99	X		0.63	X	0.7	=	35.69	(74)
North	0.9x	0.77	X	1.	35	X	7	74.68	X		0.63	X	0.7	=	30.81	(74)
North	0.9x	0.77	X	3.	33	X	7	74.68	X		0.63	X	0.7	=	76	(74)
North	0.9x	0.77	X	0.	99	X	7	74.68	X		0.63	X	0.7	=	22.59	(74)
North	0.9x	0.77	X	1.	46	X	7	74.68	X		0.63	X	0.7	=	33.32	(74)
North	0.9x	0.77	X	1.	35	X	5	9.25	X		0.63	X	0.7	=	24.44	(74)
North	0.9x	0.77	X	3.	33	X	5	9.25	X		0.63	X	0.7	=	60.29	(74)
North	0.9x	0.77	х	0.	99	X	5	9.25	X		0.63	X	0.7	=	17.93	(74)
North	0.9x	0.77	Х	1.	46	X	5	59.25	X		0.63	X	0.7	=	26.44	(74)
North	0.9x	0.77	х	1.	35	X	4	11.52	X		0.63	X	0.7	=	17.13	(74)
North	0.9x	0.77	Х	3.	33	X	4	11.52	X		0.63	X	0.7	=	42.25	(74)

	_		,				,				,		_
North	0.9x	0.77	X	0.99	X	41.52	X	0.63	X	0.7	=	12.56	(74)
North	0.9x	0.77	X	1.46	X	41.52	X	0.63	X	0.7	=	18.52	(74)
North	0.9x	0.77	X	1.35	x	24.19	X	0.63	X	0.7	=	9.98	(74)
North	0.9x	0.77	X	3.33	X	24.19	X	0.63	X	0.7	=	24.62	(74)
North	0.9x	0.77	X	0.99	x	24.19	X	0.63	X	0.7	=	7.32	(74)
North	0.9x	0.77	X	1.46	x	24.19	X	0.63	X	0.7	=	10.79	(74)
North	0.9x	0.77	X	1.35	x	13.12	x	0.63	X	0.7	=	5.41	(74)
North	0.9x	0.77	X	3.33	X	13.12	X	0.63	X	0.7	=	13.35	(74)
North	0.9x	0.77	X	0.99	X	13.12	X	0.63	X	0.7	=	3.97	(74)
North	0.9x	0.77	X	1.46	x	13.12	x	0.63	X	0.7	=	5.85	(74)
North	0.9x	0.77	X	1.35	X	8.86	X	0.63	X	0.7	=	3.66	(74)
North	0.9x	0.77	X	3.33	X	8.86	X	0.63	X	0.7	=	9.02	(74)
North	0.9x	0.77	X	0.99	x	8.86	X	0.63	X	0.7	=	2.68	(74)
North	0.9x	0.77	X	1.46	X	8.86	X	0.63	X	0.7	=	3.96	(74)
South	0.9x	0.77	X	0.86	x	46.75	x	0.63	X	0.7	=	12.29	(78)
South	0.9x	0.77	X	1.48	x	46.75	x	0.63	x	0.7	=	21.15	(78)
South	0.9x	0.77	X	1.4	x	46.75	x	0.63	X	0.7	=	20	(78)
South	0.9x	0.77	X	0.86	x	76.57	x	0.63	X	0.7	=	20.12	(78)
South	0.9x	0.77	X	1.48	x	76.57	x	0.63	x	0.7	=	34.63	(78)
South	0.9x	0.77	X	1.4	x	76.57	x	0.63	X	0.7	=	32.76	(78)
South	0.9x	0.77	X	0.86	x	97.53	X	0.63	X	0.7	=	25.63	(78)
South	0.9x	0.77	X	1.48	x	97.53	x	0.63	x	0.7	=	44.12	(78)
South	0.9x	0.77	X	1.4	x	97.53	x	0.63	x	0.7	=	41.73	(78)
South	0.9x	0.77	X	0.86	x	110.23	x	0.63	x	0.7	=	28.97	(78)
South	0.9x	0.77	X	1.48	x	110.23	x	0.63	x	0.7	=	49.86	(78)
South	0.9x	0.77	X	1.4	X	110.23	X	0.63	X	0.7	=	47.16	(78)
South	0.9x	0.77	X	0.86	x	114.87	X	0.63	X	0.7	=	30.19	(78)
South	0.9x	0.77	X	1.48	x	114.87	x	0.63	x	0.7	=	51.96	(78)
South	0.9x	0.77	X	1.4	x	114.87	X	0.63	X	0.7	=	49.15	(78)
South	0.9x	0.77	X	0.86	x	110.55	X	0.63	X	0.7	=	29.05	(78)
South	0.9x	0.77	X	1.48	x	110.55	x	0.63	x	0.7	=	50	(78)
South	0.9x	0.77	X	1.4	X	110.55	X	0.63	X	0.7	=	47.3	(78)
South	0.9x	0.77	X	0.86	x	108.01	X	0.63	X	0.7	=	28.39	(78)
South	0.9x	0.77	X	1.48	x	108.01	x	0.63	X	0.7	=	48.85	(78)
South	0.9x	0.77	X	1.4	x	108.01	x	0.63	X	0.7	=	46.21	(78)
South	0.9x	0.77	x	0.86	x	104.89	x	0.63	x	0.7	=	27.57	(78)
South	0.9x	0.77	x	1.48	x	104.89	x	0.63	x	0.7	=	47.44	(78)
South	0.9x	0.77	x	1.4	x	104.89	x	0.63	x	0.7	=	44.88	(78)
South	0.9x	0.77	X	0.86	x	101.89	x	0.63	x	0.7	=	26.78	(78)
South	0.9x	0.77	x	1.48	x	101.89	x	0.63	x	0.7	=	46.08	(78)
South	0.9x	0.77	×	1.4	X	101.89	×	0.63	X	0.7	=	43.59	(78)

	_												_				
South	0.9x	0.77		X	0.86		X	82	2.59	X	0.6	3	X	0.7	=	21.71	(78)
South	0.9x	0.77		X	1.48		X	82	2.59	X	0.6	3	X	0.7	=	37.35	(78)
South	0.9x	0.77		X	1.4		X	82	2.59	X	0.6	3	x	0.7	=	35.33	(78)
South	0.9x	0.77		X	0.86		X	5	5.42	X	0.6	3	x	0.7	=	14.57	(78)
South	0.9x	0.77		X	1.48		x	5	5.42	X	0.6	3	x	0.7	=	25.07	(78)
South	0.9x	0.77		X	1.4		x	5	5.42	x	0.6	3	x	0.7	=	23.71	(78)
South	0.9x	0.77		X	0.86		X	4	0.4	X	0.6	3	x	0.7	=	10.62	(78)
South	0.9x	0.77		X	1.48		x	4	0.4	x	0.6	3	x	0.7	=	18.27	(78)
South	0.9x	0.77		X	1.4		x	4	0.4	x	0.6	3	x	0.7	=	17.28	(78)
West	0.9x	0.77		X	0.5		X	19	9.64	X	0.6	3	x	0.7	=	3	(80)
West	0.9x	0.77		X	0.5		X	19	9.64	X	0.6	3	x	0.7	=	3	(80)
West	0.9x	0.77		X	0.5		X	38	3.42	X	0.6	3	x	0.7	=	5.87	(80)
West	0.9x	0.77		X	0.5		x	38	3.42	x	0.6	3	x	0.7	=	5.87	(80)
West	0.9x	0.77		X	0.5		X	63	3.27	X	0.6	3	x	0.7	=	9.67	(80)
West	0.9x	0.77		X	0.5		X	63	3.27	X	0.6	3	x	0.7	=	9.67	(80)
West	0.9x	0.77		X	0.5		x	92	2.28	X	0.6	3	x	0.7	=	14.1	(80)
West	0.9x	0.77		X	0.5		X	92	2.28	X	0.6	3	X	0.7	=	14.1	(80)
West	0.9x	0.77		X	0.5		X	11	3.09	X	0.6	3	X	0.7	=	17.28	(80)
West	0.9x	0.77		X	0.5		X	11	3.09	X	0.6	3	x	0.7	=	17.28	(80)
West	0.9x	0.77		X	0.5		x	11	5.77	X	0.6	3	x	0.7	=	17.69	(80)
West	0.9x	0.77		X	0.5		x	11	5.77	x	0.6	3	x	0.7	=	17.69	(80)
West	0.9x	0.77		X	0.5		x	11	0.22	x	0.6	3	x	0.7	=	16.84	(80)
West	0.9x	0.77		X	0.5		x	11	0.22	x	0.6	3	x	0.7	=	16.84	(80)
West	0.9x	0.77		X	0.5		x	94	4.68	x	0.6	3	x	0.7	=	14.47	(80)
West	0.9x	0.77		X	0.5		x	94	4.68	x	0.6	3	x	0.7	=	14.47	(80)
West	0.9x	0.77		X	0.5		x	7:	3.59	X	0.6	3	x	0.7	=	11.24	(80)
West	0.9x	0.77		X	0.5		X	7:	3.59	X	0.6	3	x	0.7	=	11.24	(80)
West	0.9x	0.77		X	0.5		x	4	5.59	x	0.6	3	x	0.7	=	6.97	(80)
West	0.9x	0.77		x	0.5		x	4	5.59	x	0.6	3	x	0.7	=	6.97	(80)
West	0.9x	0.77		X	0.5		x	24	1.49	x	0.6	3	x	0.7	=	3.74	(80)
West	0.9x	0.77		x	0.5		X	24	1.49	X	0.6	3	x	0.7	=	3.74	(80)
West	0.9x	0.77		x	0.5		X	16	6.15	X	0.6	3	x	0.7	=	2.47	(80)
West	0.9x	0.77		x	0.5		X	16	6.15	X	0.6	3	x	0.7	=	2.47	(80)
ጉ					for each		_				= Sum(7				1	7	
(83)m=	82.61	143.54	206.0			328.67	_	36.03	319.86	277	.93 22	9.41	161.04	99.41	70.43	_	(83)
ŗ				_	$\frac{(84)m = (}{}$		Ť					-		1	1	7	(5.1)
(84)m=	738.76	794.54	832.8	6	864.59	380.06	<u> </u>	353.6	817.99	785	5.3 75	8.55	727.67	707.49	709.84		(84)
7. Mea	an inter	nal temp	eratu	re (heating s	easor	n)										
Tempe	erature	during h	eating	g pe	eriods in t	he livi	ng	area f	rom Tab	ole 9,	Th1 (°	C)				21	(85)
Utilisa				$\overline{}$	ving area		Ť					-		_			
	Jan	Feb	Ма	r	Apr	May		Jun	Jul	Αι	ug S	Sep	Oct	Nov	Dec		

(86)ne															
Section Sect	(86)m=	0.94	0.92	0.89	0.84	0.75	0.62	0.48	0.52	0.69	0.85	0.92	0.94		(86)
Temperature during Deating Deriods in rest of dwelling from Table 9, Th2 (°C)	Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(88)ms	(87)m=	19.05	19.25	19.6	20.05	20.48	20.79	20.92	20.9	20.69	20.17	19.54	19.01		(87)
Main	Temp	erature	during h	neating p	eriods ir	rest of	dwelling	from Ta	ıble 9, Tl	n2 (°C)					
Respire 0.93 0.91 0.88 0.82 0.71 0.55 0.39 0.43 0.63 0.82 0.9 0.94	(88)m=	20.02	20.02	20.02	20.03	20.03	20.04	20.04	20.04	20.03	20.03	20.03	20.02		(88)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m	Utilisa	ation fac	tor for g	ains for	rest of d	welling, l	h2,m (se	e Table	9a)						
(90) me	(89)m=	0.93	0.91	0.88	0.82	0.71	0.55	0.39	0.43	0.63	0.82	0.9	0.94		(89)
(90) me	Mear	interna	l temper	ature in	the rest	of dwelli	ng T2 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (82)m 17.71 17.98 18.45 19.07 19.62 20.01 20.15 20.13 19.89 19.23 18.39 17.65 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m 17.55 17.83 18.3 18.3 18.3 19.47 19.86 20 19.98 19.74 19.08 18.24 17.5 (93) (93							<u> </u>					18.14	17.37		(90)
17.71 17.98 18.45 19.07 19.62 20.01 20.15 20.13 19.89 19.23 18.39 17.65 (92)				-						f	LA = Livin	g area ÷ (4	4) =	0.17	(91)
17.71 17.98 18.45 19.07 19.62 20.01 20.15 20.13 19.89 19.23 18.39 17.65 (92)	Mear	interna	l temper	ature (fc	r the wh	ole dwel	llina) = fl	_A × T1	+ (1 – fL	A) x T2			'		_
33 17.56 17.83 18.3 18.92 19.47 19.86 20 19.98 19.74 19.08 18.24 17.5 (93)				· `	ı —				<u> </u>		19.23	18.39	17.65		(92)
8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.9 0.88 0.84 0.78 0.68 0.54 0.39 0.42 0.61 0.78 0.87 0.91 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 664.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W = ((39)m x [(33)m— (96)m] (97)m= 1340.21 1304.7 1188.25 999.68 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 204 358.08 513.51 Total per year (RWh/lyear) = Sum(98). s.s. 2 = 2706.48 (98) Space heating requirements — Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (201) Fraction for total heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (202) = 1 - (201) = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208)	Apply	adjustn	nent to t	he mear	internal	tempera	ature fro	m Table	4e, whe	re appro	priate				
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.9 0.88 0.84 0.78 0.68 0.54 0.39 0.42 0.61 0.78 0.87 0.91 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 664.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W = ((39)m x ((93)m – (96)m) 1 (97)m= 1340.21 1304.7 1188.25 999.68 774.02 5194.3 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)m= 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 0 204 358.08 513.51 Total per year (kWh/year) = Sum(98)h. ss. p = 2706.48 (98) Space heating: Fraction of space heat from secondary/supplementary system (202) x [1 – (201) =	(93)m=	17.56	17.83	18.3	18.92	19.47	19.86	20	19.98	19.74	19.08	18.24	17.5		(93)
The utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	8. Sp	ace hea	ting requ	uirement											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec					•		ed at ste	ep 11 of	Table 9b	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Utilisation factor for gains, hm: (94)m= 0.9 0.88 0.84 0.78 0.68 0.54 0.39 0.42 0.61 0.78 0.87 0.91 Useful gains, hmGm, W = (94)m x (84)m (95)m= [664.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95)me 644.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95)me 644.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95)me 644.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95)me 644.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95)me 644.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (96)me 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.6 16.4 14.1 10.6 7.1 4.2 (97)me 1340.21 1304.7 1188.25 996.68 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)me 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 0 204 358.08 513.51 Total per year (kWh/year) = Sum(98)sv = 2706.48 (98) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 0 204 358.08 513.51	tne ui		ı				lup	lid	Λιια	Son	Oot	Nov	Doo		
(94)me	l Itilie:		<u> </u>		<u> </u>	iviay	Jun	Jui	Aug	Sep	Oct	INOV	Dec		
Useful gains, hmGm , W = (94)m x (84)m (95)m						0.68	0.54	0.39	0.42	0.61	0.78	0.87	0.91		(94)
(95)me 664.77 698.57 703.63 676.92 601.85 458.07 317.96 330.71 465.84 570.95 615.86 644.11 (95) Monthly average external temperature from Table 8 (96)me 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W = (39)m × ((93)m × ((93)m × ((93)m × (96)m) (97)me 1340.21 1304.7 1188.25 999.68 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 × ((97)m - (95)m] × (41)m (98)me 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 204 358.08 513.51			hmGm .	. W = (9 ²		4)m									
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m] (97)m= 1340.21 1304.7 1188.25 999.68 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 0 204 358.08 513.51 Total per year (kWh/year) = Sum(98)s				<u>`</u>	ŕ		458.07	317.96	330.71	465.84	570.95	615.86	644.11		(95)
Heat loss rate for mean internal temperature, Lm , W = [(39)m × [(93)m – (96)m] (97)m = 1340.21 1304.7 1188.25 999.68 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) (98)m = 502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51 (98) (9	Monti	hly avera	age exte	rnal tem	perature	from Ta	able 8							l	
(97)m= 1340.21 1304.7 1188.25 999.88 774.02 519.43 335.65 353.41 559.34 845.14 1113.19 1334.32 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51 Total per year (kWh/year) = Sum(98)sa_12 = 2706.48 (98) Space heating requirement in kWh/m²/year 28.95 (99) 9a. Energy requirements — Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) (202) = 1 - (201) = 0 (201) Fraction of total heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 204 358.08 513.51	(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m=	Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]		ī	ı	
Space heating requirement in kWh/m²/year Space heating requirement in kWh/m²/year Space heating requirement in kWh/m²/year Space heating: Fraction of space heat from main system(s) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204)	` '								l				1334.32		(97)
Total per year (kWh/year) = Sum(98) ₁₋₅₉₋₁₂ = 2706.48 (98)				1											
Space heating requirement in kWh/m²/year 28.95 (99) 9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.2 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51	(98)m=	502.53	407.32	360.56	232.39	128.1	0	0							7(00)
9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.2 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 204 358.08 513.51									Tota	l per year	(kWh/year	r) = Sum(9	8) _{15,912} =	2706.48	╣
Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.2 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 204 358.08 513.51	Space	e heatin	g require	ement in	kWh/m²	/year								28.95	(99)
Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) Fraction of total heating from main system 1 Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 0 204 358.08 513.51	9a. En	ergy rec	quiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
Fraction of space heat from main system(s) Fraction of total heating from main system 1 Efficiency of main space heating system 1 In (202) Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % In (204) 204) = (202) × [1 - (203)] =	•		•			, .							İ		7
Fraction of total heating from main system 1		-					mentary	-	(000)	(004)				0	╡
Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51					•	` ,			. ,	, ,				1	╡
Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year				•	•				(204) = (204)	02) × [1 –	(203)] =			1	(204)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 204 358.08 513.51	Efficie	ency of r	main spa	ace heat	ing syste	em 1								93.2	(206)
Space heating requirement (calculated above) 502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51	Efficie	ency of s	seconda	ry/supple	ementar	y heating	g system	ո, %						0	(208)
502.53 407.32 360.56 232.39 128.1 0 0 0 0 204 358.08 513.51		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
	Space	e heatin		ement (c	alculate	d above))							ı	
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206) $ (211)		502.53	407.32	360.56	232.39	128.1	0	0	0	0	204	358.08	513.51		
	(211)m)m x (20	4)] } x 1	00 ÷ (20	6)			•			•		ı	(211)
539.19 437.04 386.86 249.35 137.44 0 0 0 0 218.88 384.2 550.98		539.19	437.04	386.86	249.35	137.44	0	0							_
Total (kWh/year) =Sum(211) _{15,1012} = 2903.95 (211)									T-1-	. / /					

(215)m= 0 0 0	0	0	0	0	0	0	0	0	0]	
	I			<u> </u>	Tota	l (kWh/yea	ar) =Sum(2	215) _{15,101}	<u>. </u>	0	(215
Water heating											_
Output from water heater (calculate	ulated ab		147.65	141.5	155.60	455.50	175.46	105.00	199.58	1	
Efficiency of water heater	109.2	165.59	147.65	141.5	155.68	155.53	175.46	185.92	199.56	80.1	(216
(217)m= 87.42 87.23 86.81	85.96	84.44	80.1	80.1	80.1	80.1	85.52	86.84	87.53	00.1	(217
Fuel for water heating, kWh/mo	onth				<u> </u>			<u> </u>	<u> </u>	ı	
(219) m = (64) m x $100 \div (217)$ 1		106.1	104 22	176.65	104.26	104 10	20E 40	1 2444	1 220 02	1	
219)m= 234.05 206.65 217.81	196.83	196.1	184.33	176.65	194.36 Tota	194.18 I = Sum(2	205.18 19a) =	214.1	228.02	2448.25	(219
Annual totals								Wh/yea	r	kWh/yea	
Space heating fuel used, main	system '	1						,		2903.95	
Nater heating fuel used										2448.25	Ī
Electricity for pumps, fans and	electric k	keep-ho	t								
central heating pump:									30]	(230
boiler with a fan-assisted flue									45]	(23
Fotal electricity for the above, k	⟨Wh/yea।	r			sum	of (230a).	(230g) =			75	(23
	-										
Electricity for lighting										423.4	(232
, , ,											╡
Electricity generated by PVs	ses (211)(221)	+ (231)	+ (232).	(237b)	=				-1708.91	(233
Electricity generated by PVs Total delivered energy for all us	` '	, , ,	+ (231)	+ (232).	(237b)	=					(233
Electricity generated by PVs	` '	, , ,	, ,		(237b)	=	Fuel P	trico		-1708.91 4141.69	(232 (233 (338
Electricity generated by PVs Total delivered energy for all us	` '	, , ,	Fu		(237b)	=	Fuel P (Table			-1708.91	(233
Electricity generated by PVs Total delivered energy for all us	eating sys	, , ,	Fu kW	el	(237b)	=		12)	x 0.01 =	-1708.91 4141.69 Fuel Cost	(233
Electricity generated by PVs Total delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1	eating sys	, , ,	Fu kW	el /h/year	(237b)	=	(Table	12)	x 0.01 = x 0.01 =	-1708.91 4141.69 Fuel Cost £/year	(233)
Electricity generated by PVs Total delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2	eating sys	, , ,	Fu kW (21:	el /h/year	(237b)	=	(Table	12)		-1708.91 4141.69 Fuel Cost £/year	(23:
Electricity generated by PVs Total delivered energy for all us 10a. Fuel costs - individual he	eating sys	, , ,	Fu kW (21:	el /h/year 1) x 3) x 5) x	(237b)	=	(Table 3.4 0 13.	12)	x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0	(24) (24) (24)
Electricity generated by PVs Total delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	eating sys	, , ,	Fu kW (21) (21)	el /h/year 1) x 3) x 5) x	(237b)	=	(Table 3.4 0 13. 3.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12)	x 0.01 = x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2	(24) (24) (24) (24) (24)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-	eating sys	stems:	Fu kW (21: (21: (21: (21:	el /h/year 1) x 3) x 5) x 9)			(Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	12) 18 19 18 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89	(24) (24) (24)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	eating sys	stems:	Fu kW (21: (21: (21: (21:	el /h/year 1) x 3) x 5) x 9)			(Table 3.4 0 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.	12) 18 19 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89	(24) (24) (24) (24) (24)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep- if off-peak tariff, list each of (23)	eating systems	stems:	Fu kW (21: (21: (21: (23: eparately	el /h/year 1) x 3) x 5) x 9)			(Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12) 18 19 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	x = 0.01 = 0.001 = 0	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89 Table 12a	(24) (24) (24) (24) (24)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep- if off-peak tariff, list each of (23 Energy for lighting	eating systems	stems:	Fu kW (21 (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9)	licable a		(Table 3.4 0 13. 3.4 13. 7 fuel pri 13.	12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	x = 0.01 = 0.001 = 0	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89 Table 12a 55.85 120	(24) (24) (24) (24) (24) (24) (25) (25)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep- if off-peak tariff, list each of (23 Energy for lighting Additional standing charges (Ta	eating systems. Short (2) able 12)	stems:	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year 1) x 3) x 5) x 9) 1) / as app of (233) to	licable a		(Table 3.4 0 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89 Table 12a 55.85	(23 (33 (33 (24 (24 (24 (24 (25 (25)
Electricity generated by PVs Fotal delivered energy for all us 10a. Fuel costs - individual he Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep- if off-peak tariff, list each of (23 Energy for lighting	eating systems. Short (2) able 12)	230g) se	Fu kW (21) (21) (21) (23) eparately (23)	el /h/year / / / / / / / / / / / / / / / / / / /	licable a		(Table 3.4 0 13. 3.4 13. 7 fuel pri 13.	12) 18 19 18 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11	x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to x 0.01 =	-1708.91 4141.69 Fuel Cost £/year 101.06 0 85.2 9.89 Table 12a 55.85 120	(24) (24) (24) (24) (24) (24)

Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		0.44 (257)
SAP rating (Section 12)			93.8 (258)
12a. CO2 emissions – Individual heating system	s including micro-C	HP	
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	627.25 (261)
Space heating (secondary)	(215) x	0.519	0 (263)
Water heating	(219) x	0.216	528.82 (264)
Space and water heating	(261) + (262) + (263)	+ (264) =	1156.08 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	219.74 (268)
Energy saving/generation technologies Item 1		0.519 =	-886.93 (269)
Total CO2, kg/year		sum of (265)(271) =	527.82 (272)
CO2 emissions per m ²		(272) ÷ (4) =	5.65 (273)
EI rating (section 14)			95 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	3542.82 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22	2986.87 (264)
Space and water heating	(261) + (262) + (263)	+ (264) =	6529.69 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1299.84 (268)
Energy saving/generation technologies Item 1		3.07 =	-5246.36 (269)
'Total Primary Energy		sum of (265)(271) =	2813.41 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	30.1 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 29 November 2022

Property Details: Plot 4

Dwelling type:Semi-detached House

Located in:EnglandRegion:East Anglia

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:South

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 296.14 (P1)

Transmission heat loss coefficient: 5

Summer heat loss coefficient: 355.19 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
North (W_97)	0	1
South (W_98)	0	1
South (W_99)	0	1
South (W_100)	0	1
North (W_101)	0	1
North (W_102)	0	1
West (W_103)	0	1
West (W_104)	0	1
North (W 105)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North (W_97)	0.85	0.9	1	0.76	(P8)
South (W_98)	0.85	0.9	1	0.76	(P8)
South (W_99)	0.85	0.9	1	0.76	(P8)
South (W_100)	0.85	0.9	1	0.76	(P8)
North (W_101)	0.85	0.9	1	0.76	(P8)
North (W_102)	0.85	0.9	1	0.76	(P8)
West (W_103)	0.85	0.9	1	0.76	(P8)
West (W_104)	0.85	0.9	1	0.76	(P8)
North (W_105)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	g _	FF	Shading	Gains
North (W_97)	0.9 x	1.35	82.12	0.63	0.7	0.76	33.66
South (W_98)	0.9 x	0.86	114.84	0.63	0.7	0.76	29.99
South (W_99)	0.9 x	1.48	114.84	0.63	0.7	0.76	51.61
South (W_100)	0.9 x	1.4	114.84	0.63	0.7	0.76	48.82
North (W_101)	0.9 x	3.33	82.12	0.63	0.7	0.76	83.03
North (W_102)	0.9 x	0.99	82.12	0.63	0.7	0.76	24.69

SAP 2012 Overheating Assessment

West (W_103) West (W_104) North (W_105)	0.9 x 0.9 x 0.9 x	0.5 0.5 1.46	119.47 119.47 82.12	0.63 0.63 0.63	0.7 0.7 0.7	0.76 0.76 0.76 Total	18.14 18.14 36.41 344.47	(P3/P4)
Internal gains:								
				Jui	ne	July	August	
Internal gains				514	.57	495.13	504.37	
Total summer gains				880).16	839.6	805.44	(P5)
Summer gain/loss ra	atio			2.4	2.48 2.36		2.27	(P6)
Mean summer exter		iture (Eas	t Anglia)	15.	4	17.6	17.6	
Thermal mass temp	erature incr	ement	0 ,	1.3		1.3	1.3	
Threshold temperate				19.	18	21.26	21.17	(P7)
Likelihood of high		nperature	•	No	t significant	Slight	Slight	
_							_	

Slight

Assessment of likelihood of high internal temperature: